
Introduction to Groovy and Grails

Mohamed Seifeddine

November 6, 2009

1

Contents
1 Foreword 5

2 Introduction to Groovy 7

3 Getting started 9
3.1 Installing Groovy . 9

3.1.1 JDK - A Prerequisite . 9
3.1.2 Installing Groovy . 9

3.2 Updating Groovy . 10
3.3 Editors for Groovy and Grails . 10
3.4 groovysh, groovyConsole & groovy 10

4 Boolean Evaluation, Elvis Operator & the Safe Navigation Op-
erator 13
4.1 Elvis Operator . 15
4.2 Safe Navigation Operator . 15

5 String & GString 18

6 Classes, Dynamic type, Methods, Closures the & Meta-Object
Protocol 20
6.1 Dynamic type . 24
6.2 Closure . 27

6.2.1 Create . 27
6.2.2 Call . 28
6.2.3 Getting Information . 31
6.2.4 Method Reference Pointer 31

6.3 More on Methods . 33
6.3.1 Optional Parantheses . 33
6.3.2 Positional Parameters . 33
6.3.3 Optional Parameters . 34
6.3.4 Mapped Parameters . 35
6.3.5 Dynamic Method Call . 35

6.4 Meta-Object Protocol . 37
6.4.1 Adding Methods & Properties 37
6.4.2 Add Constructor . 39
6.4.3 Intercepting Method Calls 39
6.4.4 Getting Information . 40

7 Collections (List, Range, Map) and Iterative Object Methods 44
7.1 List . 44
7.2 Range . 47
7.3 Map . 49

8 Other 52
8.1 Groovy Switch . 52
8.2 Groovy SQL . 53
8.3 File . 55
8.4 Exception Handling . 57

2

8.5 Other . 57

9 Introduction to Grails 58

10 Getting Started 60
10.1 Installing Grails . 60
10.2 Editors for Groovy and Grails . 60
10.3 Grails Commands . 61
10.4 Create Application & Grails Directory Structure 62
10.5 Run Application & Database Configuration 64

11 MVC model in Grails 68
11.1 Domain . 68
11.2 Controller & View . 71

12 More on Domain 75
12.1 Create . 75
12.2 Read . 76

12.2.1 Criteria . 78
12.2.2 SQL . 79

12.3 Update . 80
12.4 Set, List and Map . 82

12.4.1 Set . 82
12.4.2 List . 82
12.4.3 Map . 83

12.5 Relations . 84
12.5.1 Owner . 85
12.5.2 One-to-one . 86
12.5.3 One-to-Many . 86
12.5.4 Many-to-Many . 87

12.6 Delete . 87
12.7 Constraints . 88
12.8 Mapping . 89
12.9 Other . 90

12.9.1 Events . 90
12.9.2 Methods . 90

13 More on Controller 91
13.1 Scope . 91

13.1.1 Request . 91
13.1.2 Session . 92
13.1.3 Flash . 93

13.2 Redirect & Chain . 93
13.2.1 Redirect . 93
13.2.2 Chain . 94

13.3 Interceptors . 95

14 More on View 97
14.1 Code in GSP . 97

14.1.1 Page Directive . 97
14.1.2 Groovy Code . 98

3

14.2 Tags in GSP . 99
14.2.1 Grails Tag Library . 99
14.2.2 Creating Custom Tags . 102

14.3 Template . 104
14.4 Layout . 105

15 Other 108
15.1 Filters . 108
15.2 Ajax . 109
15.3 Deploying . 113
15.4 Other . 114

A Appendix 115
A.1 Files . 115

A.1.1 grails-app/conf/DataSource.groovy 115

4

1 Foreword

This document is written as my Masters’ thesis and is based on a long individual
learning period of Groovy and Grails through the developement of what later
became SoukLubnan.com. A Website in its younger days that allows people in
Lebanon to Buy & Sell products online.

The decision to do this on the relatively new Grails framework was not an easy
one to make. But Groovy had been brought to my attention while studying
abroad in North Carolina and the choice between going with Grails or one of
the many other application frameworks soon became clear. It’s a choice I’m
happy I made and one I do not regret today. Both Groovy and Grails are here
to stay for a long period of time and that’s because they are both excellent on
what they’re intended for. I’m not the only one to share this belief either. In
November 2008, G2One, the company behind Groovy and Grails was acquired
by SpringSource and in August 2009, SpringSource was acquired by VMware
for the sum of 420 million USD [19] and the success of Groovy and Grails are
likely to be a continued priority for the new parties involved.

With little to no previous experience in Web development this would however
prove to be a tough journey to make on your own. My toughest battle was
against time. I had to finish the development of the Website to later write
this document about Groovy and Grails. Of course, the optimistic time frame
didn’t go as planned, but I have learned and gained lots of experience during
this period as well.

That’s why this document is written with the novice reader in mind. A reader
that like me when I started, knew little to nothing about Web development.
I’ve pretty much attempted to write a getting started with Groovy and Grails
document and my hope is that it’ll prove to be a useful resource for people in
my then situation.

It’s not that there aren’t plenty of books and material on Groovy and Grails
available out there, but with most books being between 500-700 pages, it’s likely
for some potential readers to feel discouraged on start digging through all those
pages. The books are great for providing an in depth coverage of these topics,
but for those want a brief presentation on how to get started, a shorter compact
version is likely to be a desirable resource as well.

The keyword for this document is on introduction. To get the reader familiar
with key topics of Groovy and Grails. To provide a level of understanding of
what Groovy and Grails is, what they offer, how they interact, what purpose
they fill, what new they bring to the table and of course, how to use them.

The purpose of this document is not to be a complete coverage on Groovy and
Grails although many of the described topics often are. The ones covered are
primarly the ones that needs to be brought to the novice readers attention1.

The document is divided into two chapters. One covering the programming
language Groovy, the second covering the Web development framework Grails.

1Except for some of the topics described in Section 6

5

http:www.souklubnan.com

Sections often start of with a small presentation of the topic, followed by easy,
often abstract examples that are normally commented on right after.

The experience required from the reader of this document is basic knowledge of
the Java language, SQL and very basic HTML. This document do not attempt
to teach the reader anything about HTML, XML, CSS or JavaScript. These
are topics that you’re hopefully already familiar with or topics you’ll hopefully
improve after reading this document and start working with Grails by developing
your own Web application. Learning those topics then will surely come to you
automatically.

Hopefully, this document will prove to be an easy step into the world of Groovy
and Grails.

Many thanks for lots of the help must be awarded to the people on the Groovy
and Grails mailing lists for answering questions and for enabling me to start
getting hang of it all. Also thanks to the authors of all the Groovy and Grails
books.

A special thanks to my instructor Roger Henriksson at Lund University for
taking on my suggestion on a document about Groovy and Grails, for being
patient, helpful and for trusting me on finally delivering a "complete" document.

6

2 Introduction to Groovy

Groovy is a relatively new dynamic language built to run natively on the pow-
erful Java Virtual Machine. This is Groovy’s best feature. This feature also
enables Groovy to integrate seamlessly with Java and because Groovy was de-
signed with the JVM in mind, there is little to no impedance mismatch [4].

Groovy compiles to native Java bytecode, with resulting .class files almost in-
distinguishable from what would have been produced by similar Java code. It’s
therefore subject to the same just-in-time byte code optimizations that are per-
formed on Java byte code [2], making it comparatively fast, even for scripting
tasks.

The Java platform has an undeniable market share, and corporate clients often
run on a Java platform, such as Java Enterprise, allowing nothing but Java
to be developed and deployed in production [15]. "The language itself has
remained pretty much unchanged since the early days to help support backward
compatibility" (Christopher M.Judd & al) [4]. Lots of baggage have piled up
throughout all these years and Java has become complex and difficult.

Groovy was influenced and is often compared to other powerful scripting lan-
guages such as Python, Ruby and Perl as well as non scripting dynamic ones
such as Smalltalk, Lisp or Dylan. Dierk König & al says, "the goal of Groovy
is to provide language capabilities of comparable impact on the Java platform,
while obeying the Java object model and keeping the perspective of a Java
programmer" [15].

"Groovy and Java are like close cousins, and their syntax are very similar hence
why Groovy is so easy to learn for Java developers" (Guillaume Laforge) [27].
The similiarities are so close that most Java programs are valid Groovy pro-
grams. Different from other dynamic languages that are ported to the JVM
such as JRuby and Jython, Groovy was designed with Java in mind [4], "signif-
icantly reducing the learning curve so Java developers feel right at home with
Groovy" (Christopher M.Judd & al). Neither JRuby or Jython show as much
promise and potential as Groovy. Futhermore, using the Groovy language does
not limit us to Groovy only. Parts can be written in Groovy and others in
Java, not only by separation to different source files, but we can write and call
Java code within a Groovy program because the integration between the two
languages is complete. Groovy itself is actually written in a combination of Java
and Groovy [20].

This seamless integration between the two languages allows us to harness "all
the power of Java, including the massive set of available libraries" (Dierk König
& al) [15]. Groovy does not only have access to the existing Java API, but
provides its own Development Kit (GDK), which also extends the Java API by
adding new methods to existing Java classes, making them groovier. Almost
anything we can do with Java we can do with Groovy only most things are
much easier and cleaner to do in Groovy.

Groovy is a dynamic language, often thought of as just a scripting language.
But as pointed out already, it’s more than a just scripting language. Describing
the Groovy dynamic language, Venkat Subramaniam says that "dynamic lan-

7

guages have the ability to extend a program at runtime, including changing the
structure of objects, types and behavior. Dynamic languages allows us to do
things at runtime that static languages do at compile time" [1].

Java is often described as an object oriented language but as Bashar Abdul-
Jawad points out "Java is not a purely object oriented language despite what
some people might believe. It has primitive types, such as int, long and double
that are not objects and have no reference semantics. Operators in Java, such
as +, * and - can operate on primitive types only and not on objects (besides +
on String)" [20].

In Groovy everything is an object and we can call methods on anything. Even on
numbers. We can "pass blocks of code around, known as closures for immediate
or later execution and we can easily augment existing libraries with our own
specialized semantic" (Dierk König & al) [15] using the Meta-Object Protocol.

Bashar Abdul-Jawad continues, "Java has no language level support for col-
lections, that is, no literal declaration for collections such as lists or maps, as
it has for arrays" [20]. Many everyday things we want to do with Java, like
recursively going through a directory might prove to be too much effort, even
for an experienced Java professional. Groovy makes all this very simple.

The intention behind Groovy is not to replace the Java programming language.
Instead, Groovy and Java should each contribute with its respective strengths
to "smooth out some of the speed bumps that have historically slowed down
the Java development process" (Scott Davis) [7]. The role of Groovy is to
simplify tasks that are tedious in Java. "Where the Java programming language
is exacting, Groovy is expedient. Where the Java programming language is
extensive, Groovy is convenient" [8].

To summarize, Groovy is intended to coexist with Java and address the weak
points of previous approaches. "Groovy brings the best of both worlds. A
flexible, highly productive, agile and dynamic language that runs on the rich
framework of the Java Platform" (Venkat Subramaniam) [1].

8

3 Getting started

In this section we’ll try to cover how you can get started using the Groovy
language.

3.1 Installing Groovy

Installing Groovy is easy.

3.1.1 JDK - A Prerequisite

A prequisite for using Groovy is having Java Development Kit (JDK) version
1.5 or higher installed. You can skip this part if you already have this installed.

1. Goto http://java.sun.com/javase/downloads. Look for Java SE De-
velopment Kit (JDK). Download and install.

2. Create the environment variable JAVA_HOME and let it point to the JDK
installation directory. For example
c:/Program Files/Java/jdk1.6.0_13 on a Windows system.

3. On a Windows system: Add %JAVA_HOME%/bin
On a Unix like system: Add $JAVA_HOME/bin
to the PATH environment variable.

4. Open up a new command prompt or terminal and enter
» java -version.
If properly installed, you should see output similar to:

java version "1.6.0_13"
Java(TM) SE Runtime Environment (build 1.6.0_13-b03)
Java HotSpot(TM) Client VM (build 11.3-b02, mixed mode, ...)

3.1.2 Installing Groovy

This guide for installing Groovy is applicable for Windows and Unix like sys-
tems. There are installers available but this guide is based on the binary
release version in zip format, which is platform independent and the recom-
mended way to install Groovy.

1. Download the lastest stable binary release version in zip format of
Groovy, currently 1.6.4 from http://groovy.codehaus.org/Download.
We will refer to this version in the rest of this installation guide.

2. Extract the content from the downloaded zip file into a location of your
choice. In c:/ will do just fine on a Windows system. You should now
have a folder c:/groovy-1.6.4.

3. Create the environment variable GROOVY_HOME and let it point to the ex-
tracted directory. For example c:/groovy-1.6.4.

9

http://java.sun.com/javase/downloads
http://groovy.codehaus.org/Download

4. On a Windows system: Add %GROOVY_HOME%/bin
On a Unix like system: Add $GROOVY_HOME/bin
to the PATH environment variable.

5. Open up a new command prompt or terminal and enter
» groovy -version.
If properly installed, you should see output similar to:

Groovy Version: 1.6.4 JVM: 1.6.0_13

3.2 Updating Groovy

To update Groovy, download the latest stable binary release version in zip for-
mat of Groovy, extract and edit the GROOVY_HOME environment variable. For
example to c:/groovy-1.6.5.

3.3 Editors for Groovy and Grails

There is Groovy support available for nearly every modern IDE and text editor.
Eclipse, NetBeans, Intellij IDEA, jEdit, Oracle JDeveloper, XCode, TextPad,
SubEthaEdit, Vim, Emacs and more.

Popular editors for working with Groovy and Grails are:

∙ Intellij IDEA (not free)

∙ NetBeans

∙ Eclipse

∙ TextMate (Mac only)

Visit http://groovy.codehaus.org/IDE+Support for more information on Groovy
capable editors.
Visit http://www.grails.org/IDE+Integration for more information on Grails
capable editors.

3.4 groovysh, groovyConsole & groovy

There are three commands we can use to execute Groovy scripts and Groovy
code. They will be helpful and valuable for the learning experience and provides
and easy way to test, analyze and understand Groovy better. It’s recommended
to use these tools, and especially the groovyConsole in an hands on approach
to be able to fully understand the basics of the Groovy language.

» groovysh

This command will start the groovysh command line shell, which can be used
to execute code interactivly ’on the fly’. Here is a simple example:

10

http://groovy.codehaus.org/IDE+Support
http://www.grails.org/IDE+Integration

groovy:000> print ’Hello, World!’

hello, world===> null

groovy:000> System.out.print("Hello, World!");

hello, world===> null

Both these calls, first being the Groovy way, second the Java way will output the
text to the console along with a return value. As a matter of convention, Groovy
removes the need for you to explicitly type return someObject and always returns
the results of what is placed at the end of methods and scripts. In this case,
there is no result, so null is returned.

» groovyConsole

The Groovy console is a minimal graphical based editor written in Groovy that
lets you load, create, write and run Groovy code instantly from within the editor.
To run the code in the editor, press Ctrl+R. To execute only a small portion,
highlight the code and press Ctrl+Shift+R or select Script -> Run Selection in
the meny. To clear the output-window press Ctrl+W.

The following is a small Groovy sample written and run in the Groovy console:

0 class Person{
1 def firstName // Dynamic type
2 def lastName
3 def gender
4 }
5

6 def newP = new Person(firstName:’Eva’) // Declare and set
7 newP.setLastName(’Svensson’) // Use of the setter
8 newP.gender = ’Female’ // Without the setter
9

10 /* With and without the getter */
11 print "${newP.getFirstName()} $newP.lastName : $newP.gender"

Output:
Eva Svensson : Female

The setter (line 7) and getter (line 11) were automatically made available, similar
to how a constructor is available in Java even when we don’t write any. We can
also use a shorter form without the setter (line 8) and getter (line 11).

Notice the use of what is called a GString (line 11). In Java we often have to
use + to concatenate strings which can result in ugly, and less readable code.

Yet another thing to notice is the missing semicolon at the end of each line.
In Groovy the semicolon is optional, but we must of course use a semicolon if
there are several statements on the same line.

If we save the contents of the last script into a file demo.groovy, we can run

11

Groovy code in yet a way:

» groovy demo.groovy

Output:
Eva Svensson : Female

This is different from Java. In Groovy, we are executing the source code.

An ordinary Java class is generated for us in the background, and if we are
running a script, Groovy will generate a class with a main method containing
the script source [4], compile the script to finally execute it.

There is also a separate Groovy compiler that can be run like this:

» groovyc demo.groovy

It’s similar to javac and should be used to avoid having to recompile the code
each time the code is being run.

12

4 Boolean Evaluation, Elvis Operator & the Safe
Navigation Operator

Groovy has many exciting little features that makes development less effort.
Boolean evaluation, called Groovy Truth is different in Groovy than in Java.
Java insist that you provide a boolean expression for the condition part in an if
statement for example. Groovy is more dynamic and includes more expressive
syntax. Depending on the context, Groovy will evaluate expressions such as
null, empty string "" and 0 to false.

Below we are looking at a couple of examples, while comparing them with Java
to try to uncover some of the differences between them. Let’s start with String
evaluations:

String str = ... // Unknown

/* Enter block if str has characters */
if(str) {...} // In Groovy
if(str != null && !str.isEmpty()) {...} // In Java

Here we’d like to safely operate on str inside the block, but only if str contains
characters. Of course there are several ways to go about this2 but even then,
Groovy’s approach is more readible and easy to understand.

We can see in Table 1 how Groovy Truth adds new flavors to boolean evaluation.
For the last example, we see that if str is null, the expression will automatically
evaluate to false and if not, evaluate to true only if its length is larger than
zero.

Context of expression Condition for true
Boolean true
Collection not empty
Character value not 0
CharSequence length > 0
Enumaration has more elements
Iterator hasNext
Number double value not 0
Map not empty
Matcher at least one match
Object[] length > 0
Any other type not null

Table 1: Treatment of types for boolean evaluation [1]

2But with no way to get around the null check. !("").equals(str) is true if
str is null

13

Example with numbers:

int number = ... // Unknown

/* Enter block if number is not 0 */
if(number) {...} // In Groovy
if(number != 0) {...} // In Java

Note that if the value of number had been -1, Groovy would still evaluate the
condition to true. Only if the double value of a number equals 0.0, will Groovy
evaluate the condition to false.

Groovy Truth examples on collections:

List lst = []
Map mp = [:]
if(lst || mp)

print ’Won’t print’ // Because lst and mp are empty

lst += ’someValue’ // Add to lst
mp += [a:’1’, b:’2’] // Add to mp

if(lst && mp)
print ’Will print’

if([1] && [’a’] && [0] && [0.0] && [false] && [null])
print ’Will print’

The last condition contained several non-empty lists and therefore each and one
of them evaluates to true no matter the content in them. Same rules applies
for Map.

Groovy overrides Java’s equality operator == on types such as String, Integer,
List and Map to name a few, to match on content rather than object equality.

In fact, Groovy lets us override and overload any operator without implementing
any specific interface by adding the corresponding method based operator to our
class. There are a wide range of operators
(+, -, ==, <=, <=>, !=, +=, -=, a[b], ...) that can be overridden but
isn’t always straightforward to get right. For more information on this topic,
please refer to [15].

Let’s examine the following two examples, written to work in both Java and
Groovy, to demonstrate the equality operator == :

14

/* Ex: 1 */
String str1 = new String("abc ");
String str2 = new String("abc ");
String str3 = str1;

if(str1 == str2) System.out.print("Will print in Groovy only");
if(str1 == str3) System.out.print("Will print in both");

/* Ex: 2 */
ArrayList<String> lst1 = new ArrayList<String>(); lst1.add("1");
ArrayList<String> lst2 = new ArrayList<String>(); lst2.add("1");
ArrayList<String> lst3 = lst1;

if(lst1 == lst2) System.out.print("Will print in Groovy only");
if(lst1 == lst3) System.out.print("Will print in both");

We can see that Groovy will evaluate all conditions to true while Java only
those when the object reference are the same. This is becuase Groovy will look
at the content when comparing both String and ArrayList as well as on several
other objects.

To test on object equality, we can use Groovy’s is() method instead:

str1.is (str2)

4.1 Elvis Operator

The Elvis Operator is a shortening of Java’s ternary operator.

In the example below, we want to use a users chatName if it’s set, otherwise set
it to Anonymous:

String chatName = user.chatName ?: ’Anonymous’ // In Groovy

String chatName = user.chatName != null ?
user.chatName : "Anonymous"; // In Java

4.2 Safe Navigation Operator

The Safe Navigation Operator (?.) lets us discretly check whether or not an
object is null when accessing its methods and properties.

To be on the safe side, we often need to make sure that a NullPointerException
is not thrown before performing the task we really want, which can result in
less readable code. Take the following example:

15

if(user?.email?.isConfirmed()) {...} // In Groovy

if(user != null && user.email != null
&& user.email.isConfirmed()) {...} // In Java

By providing the Safe Navigation Operator we can call the objects internals
without having to worry about the object being null. If the object is null,
the same expression will return null which will evaluate to false when used
in a condition. It’s usage is not limited to conditions only, but can be used on
a single line as well:

user?.doSomething() // In Groovy

if(user != null)
user.doSomething() // In Java

This is an excellent and important feature, allowing us to call methods and use
properties without the need of having clumsy if blocks everywhere.

However, this particular part of Groovy is a place we need to be careful with
not to make simple mistakes. Take a look at these two conditions:

User user = null

if(!user?.isOnline()) { print ’User is Offline’ }

if(user?.isOnline() == false) { print ’User is Offline’ }

The two conditions does not evaluate to the same value. This typical rewrite,
where a false condition is usually simplified can unfortantly cause our program
to behave in a an unexpected way if we’re using the Safe Navigation Operator
and are not cautious.

Since the ?. returns null if the object it’s being used on is null, the first
condition becomes !null which always evaluates to true and we enter the
block. Our intention here was to enter only if there was a user that happened
to be offline. The second condition will be interpreted as null == false and
evaluate to false.

Scenarios like this can also occur when comparing two objects, using ?. on one
or both and where both happen to be null. It’s a replacement for the majority
of the null checks we’d normally do, but not for all.

16

As mentioned earlier, Groovy will evaluate expressions as boolean depending on
the context they’re being used in.

/* In Groovy */
boolean notEmpty(String str){

str?.size() // Just str is actually enough
}

/* In Java */
public boolean notEmpty(String str){

return str != null && str.length() > 0 ;
}

In the Groovy code we are returning an int or null from str?.size() by
placing the code at the bottom of the method, and notice, without having to
explicity type return in front. Since the method return declaration is of type
boolean, Groovy will automatically evaluate the null or int value according to
Table 1 and return true or false.

Wondering over where size() came from? The inconsistency in Java by offering
length() for objects such as String, StringBuffer, CharBuffer, and length
without () for arrays, and size() for collections such as ArrayList can at times
be unnecessary confusing. Since they all provide similar functionality, Groovy
have made size() available to all these types, and to others as well.

17

5 String & GString

Groovy strings are instances of java.lang.String but are alot groovier. Groovy
builds on Java String in many ways and recognizes that not all use of string
literals are the same, so it offers a variety of options.

By supporting single and double quotes, triple single and double quotes, and
forward slashing to declare strings we can reduce noice and avoid escaping.

Groovy also offers something called a GString (short for ’Groovy String’ of
course).

Let’s take a look at a couple of examples to get an idea of what all this means:

/* Double quote */
String str = "Hello, World!"

/* Single quote */
’Hello, World!’ == str // True

/* Triple single quotes */
’’’Hello, World!’’’ == str // True

/* Triple double quote */
"""Hello, World!""" == str // True

/* Forward slash */
str == /Hello, World!/ // True

These are all different ways of writing a java.util.String in Groovy. But
each one has its own special usage area.

For example, if we intend to use a double quote (") in we text, we should use
the single quotes as a wrapper and vice versa to avoid having to escape, i.e.
’Hello, "Moe"’ vs "Hello, \"Moe\"" in Java.

Triple single and double quotes are normally used when a String spans over
multiple lines:

String str1 = """
SELECT * FROM Ad
WHERE status >= 2
"""

String str2 = "\nSELECT * FROM Ad\nWHERE status >= 2\n"
str1 == str2 // True

The triple single quotes would have yielded the same String. Notice how the
newlines where included in the str1 as well. To omit the newlines, we can
simply put a backslash (\) at the end of each line.

18

String str1 = """\
SELECT * FROM Ad \
WHERE status >= 2\
"""

String str2 = "SELECT * FROM Ad WHERE status >= 2"
str1 == str2 // True

A GString is of instance groovy.lang.GString and represents a string that
contains embedded values or placeholders:

String str = "World!"
print "Hello, ${str}" // Hello, World!
print ’Hello, ${str}’ // Hello, ${str}

/* Multiline GString */
int status = 2
String str = """
SELECT * FROM Ad
WHERE status >= ${status}
"""

Whenever a non-single quoted String contains an unescaped dollar sign $, it
is interpreted as a GString instead of a plain String.

There is also the special purpose forwardslash (/) to declare strings, which can be
of good use when dealing with paths and regular expressions. They eliminate
the constant need for having to escape the backslash (\) in patterns and for
special characters. Example:

/* Path */
"c:\\windows" == /c:\windows/ // True

/* Regular expression */
"\\d+-\\w+-\\d+" == /\d+-\w+-\d+/ // True
"2009-Jan-01" ==∼ /\d+-\w+-\d+/ // True (Match Operator)

Sometimes the forwardslash syntax interferes with other valid Groovy expres-
sions such as line comments, numerical expressions with multiple slashes for
division and some other less common areas and might not work as expected. So
it’s recommended to use the slashy syntax for their intended usage area, paths
and regular expressions.

Groovy adds several convenience methods to the String class through the GDK
such as isInteger(), toInteger(), toDouble(), minus(), reverse(), each(),
eachLine(), center(), execute()3 to name a few. A complete list on these
methods can be found on http://groovy.codehaus.org/groovy-jdk/.

3Enables us to run platform dependent shell commands on a String.
Try ’ls -l’.execute().text on a Unix system to get the listing of the current directory

19

http://groovy.codehaus.org/groovy-jdk/

6 Classes, Dynamic type, Methods, Closures the
& Meta-Object Protocol

Groovy is a fully fledged object oriented language with all of the OO program-
ming concepts that are familiar to Java developers such as classes, objects,
interfaces, inheritance, and etc. It’s a pure OO language unlike Java which
mixes both primitive and reference types.

In Groovy, when a primitive type gets passed into the Groovy world it’s auto-
matically boxed into its object equivalent and vice versa (see Figure 1).

Figure 1: Autoboxing in example [15]

This allows Groovy to support some interesting concepts, such as being able
to call methods on numbers. The following call 2.upto(4){print it} will for
example print 234.

Class definition in Groovy is almost identical to Java. Classes are declared using
the class keyword and may contain properties, constructors, methods and etc.

In Java, we can declare a property that by default is made package-private4

unless specified otherwise. When it comes to classes and methods, a modifier
needs however to be specified.

Groovy makes no such distinction. public, private and protected are all
available for use, but Groovy will by default use public if not explicitly specified
otherwise, for methods and classes as well. Getters and setters are automatically
available for declared properties, unless a modifier have been specified for that
property (including public).

Groovy allows us to use scripts as already seen in Section 3. "Any code that’s
not inside a class is called a script" (Bashar Abdul-Jawad) [20]. A Groovy
file can have one or more classes which do not need to match the name of the
containing file. The file can in addition to classes contain scripting code.

Common classes and packages are already imported. For example, the Calendar
class already refers to java.util.Calendar. Other Java packages and classes

4Accessible to other classes in the same package

20

that are imported by default are java.lang, java.util, java.io, java.net,
java.math.BigDecimal and java.math.BigInteger. In addition, the Groovy
packages groovy.lang and groovy.util are imported.

The as keyword can in Groovy be used to cast objects from one type to another,
aswell as type aliasing when used in an import statement. Type aliasing allows
us to refer to a class by a name of our choosing. This feature can for example
be used to resolve class naming conflicts.

Groovy also supports dynamic typing, closures, expandos5 and the Meta-Object
protocol which we’ll try to introduce in this section.

On the next page follows a Groovy file that uses many of the above mentioned
features.

Read it line by line, starting at the top. Pay attention to the comments and the
output from the script:

5Expandos are not covered in this document

21

Groovy File - DemoClasses.groovy
import java.util.Date
import java.sql.Date as SQLDate // Type alias

/* First class */
class DemoOne { // public not necessary

String firstName // Has a setter and getter
public String lastName // No setter and getter

/* Constructor. Type for methods not a requirement */
DemoOne(firstName, lastName){

this.firstName = firstName
this.lastName = lastName

}

String getFullName(){ // public not necessary
/* Returns what’s on the last line */
lastName + ", " + firstName

}
}

/* Second class */
class DemoTwo {

int number

static String demoTypeAlias(){
/* Using the type alias SQLDate */
SQLDate sqlDate = new SQLDate (0)
Date utilDate = new Date()

"SQLDate:\t\t$sqlDate \nutilDate:\t\t$utilDate "
}

/* Calling methods on numbers */
void demoNumber(){

print ’2.upto(4):\t\t’
2.upto (4) { print it } // Use of closure

print ’\n4.downto(2):\t’
4.downto (2) { print it }

print ’\n2.step(8,2):\t’
2.step (8,2) { print it }

print ’\n3.times:\t\t’
3.times { print "Hello_$it! " }

}
}

22

/* Script Starts */
println ’---DemoOne---’

DemoOne demoOne = new DemoOne(’Mikkey’, ’Mouse’) // Constructor
demoOne.setFirstName(’Mickey’) // Setter

println demoOne.getFirstName() // Getter
try {

println demoOne.getLastName()
println demoOne.setLastName(’Will not work’)

}catch(e){ println ’get & set not avail. Declared public’ }
println demoOne.lastName // Acessing property
println demoOne.getFullName() // Method call

println ’---DemoTwo---’

DemoTwo demoTwo1 = new DemoTwo(number:1) // Maps by map
DemoTwo demoTwo2 = new DemoTwo()
demoTwo2.number = 2 // Setting property

println demoTwo1.getNumber().class // Integer
println demoTwo2.number // Accessing property
println demoTwo2.number as double // as keyword casting
println ((double) demoTwo2.number) // Java style casting

println DemoTwo.demoTypeAlias() // Call static method
demoTwo1.demoNumber() // Call number method

Output:
---DemoOne---
Mickey
Mouse
Mouse, Mickey
get & set not avail. Declared public
---DemoTwo---
class java.lang.Integer
2
2.0
2.0
SQLDate: 1970-01-01
utilDate: Thu Jul 16 11:43:18 CEST 2009
2.upto(4): 234
4.downto(2): 432
2.step(8,2): 246
3.times: Hello_0! Hello_1! Hello_2!

23

6.1 Dynamic type

Groovy offers, just like Java a way of assigning a type to a variable when declar-
ing it and we’ve seen many examples of this already. The type assigned will be
used for the variable during its lifetime and can’t be changed. This is better
known as static typing.

With Groovy we are not forced to define the type of a variable if we don’t want
to. A variable can be typed or untyped. The def keyword is used to express
that the variable is untyped and that no particular type is demanded. Under
the covers, it’s "given the static type Object and a dynamic type depending on
the value assigned to it" (Bashar Abdul-Jawad) [20].

Dierk König & al emphasise that "it’s important to understand that regardless
of whether a variable’s type is explicitly declared, the system is type safe. Unlike
untyped languages, Groovy doesn’t allow you to treat an object of one type as
an instance of a different without a well defined conversion being made" [15].
For example, def str = ’10’ can’t be treated as an Integer such as being
passed to a method that expects an Integer. A type is always assigned, it’s
just that we let Groovy determine it for us. In this case str is of type String6.

Objects in dynamically typed languages don’t have to satisfy the contract on
declaration [1]. We may change the class type on a variable several times. They
simply have to respond correctly to property and method calls at runtime [1].

Dynamic typing can be useful when we’re not interested in finding out what
the actual type a method returns is. We just know that we need the returned
result. To pass it along to some other method, add it to a list or whatever. "We
are spared the work of looking them up, declaring the type, and importing the
package" [15].

Dynamic typing is not only convient for the ’lazy’ programmer but also useful
for duck typing. The naming comes from If it walks like a duck, talks like a
duck, then it’s probably a duck.

Duck typing is a style of dynamic typing in which an object’s current set of prop-
erties and methods determines the valid semantics, rather than its inheritance
from a particular class or implementation of a specific interface [13].

Take a look at the following example, where duck typing is used instead of an
interface:

6Try in groovyConsole: def str = ’10’; str.class == String

24

class Duck {

def Iam(){
’Duck’

}

def goTo(def from, def to) {
"I will walk, swim and fly from $from to $to"

}
}
class Frog {

String Iam(){
’Frog’

}

def goTo(from, to) {
"I will jump from $from to $to"

}
}

def animals = [new Duck(), new Frog()] // A list of animals
for (a in animals) // Iteration in a for

doToday (a, ’Göteborg’, ’Lund’)

void doToday (def a, def from, def to){
println "${ a.Iam() }: ${ a.goTo(from, to) }"

}

Output:
Duck: I will walk, swim and fly from Göteborg to Lund
Frog: I will jump from Göteborg to Lund

Notice that we can define parameter and return types as def for methods. We
can also omit def when declaring incoming parameters and just declare the
variable name on methods (seen on Frog’s goTo() method). The doToday()
method can be used by any class that implements the methods Iam() and
goTo().

Interfaces have their own share of problems. Changes to an interface are break-
ing changes for all classes implementing it. Abstract classes and methods are a
way around this but when using Groovy, we are not obligated to stick with any
style.

As Dierk König & al summarizes it, "the choice between static and dynamic
typing is one of the key benefits of Groovy" [15].

Dynamic duck typing allows us to add and remove methods, but if we use a
method on a def declared Duck that’s only available in Frog, we would not get
a compilation error but a runtime one.

So this does put some responsibility on the developer. For small projects this

25

should rarely be a problem, and for larger ones, the program should be backed
up by proper test cases anyway. We can in many situations minimize the amount
of code we have to write and if we really do need, the full use of interfaces are
available [15].

Dierk König & says that "the Web is full of heated discussions of whether static
or dynamic typing is better. There are good arguments for either position.
Static typing provides more information for optimization, more sanity checks
at compile time, and better IDE support. It also reveals additional informa-
tion about the meaning of variables or method parameters and allows method
overloading" [15].

26

6.2 Closure

We’ve mentioned closures a couple of times already and we saw an example of
their use earlier in DemoClasses.groovy on p.22. Perhaps it went unnoticed but
closures are one of the most important and most useful features that Groovy
brings to the Java platform and in Groovy, their usage is seen across the entire
language.

The concept of closures is not a new one and they are similar to Java’s inner
classes but with less restrictions. More often closures are associated with func-
tional languages by allowing us to execute a passed block of code that’s specified
elsewhere. This might sound a bit like calling a method, but they are different
from methods. They don’t need to be declared inside classes but can be declared
anywhere. They act like methods in that they can take parameters (which can
be closures themselves) and return values, but they are normal objects in that
they can be returned, treated, assigned to variables and passed around like any
other object.

A Groovy closure is code wrapped up as an object of type groovy.lang.Closure,
defined and recognized by curly braces { // Code here }. It’s executed only
when it’s called and not when it’s defined.

6.2.1 Create

/* With no parameter */
Closure simpleCloj1 = {

println ’Hello, World!’
}

/* With 1 undefined parameter */
def simpleCloj2 = { obj ->

println "Hello, $obj!"
}

/* With 1 defined parameter of type String */
def simpleCloj3 = { String obj ->

println "Hello, $obj!"
}

/* If we are only passing one parameter, the argument can be
omitted and we can use the keyword it for access */

def simpleCloj4 = {
println "Hello, $it!"

}

/* Takes multiple parameters */
def twoParamsCloj = { obj1, obj2 ->

println "$obj1, $obj2!"
}

27

6.2.2 Call

We can all a closure in three ways, closure(), closure.call() or
closure.doCall():

simpleCloj1()

simpleCloj2.call(’World’)

simpleCloj4.doCall(’World’)

twoParamsCloj(’Hello’, ’World’)

Output:
Hello, World!
Hello, World!
Hello, World!
Hello, World!

As seen here, a closure can be called like a method, although sometimes we
might use the other forms for clarity that it’s a closure being called or if we
need to use the Safe Navigation Operator.

Ok, that wasn’t all that cool. The above wasn’t very convincing of the powerful-
ness of closures. We could have accomplished the above with a simple method
as well. But let’s take a look at the following example written to work in Java,
where we’ve created a method that reads from a file and then takes action on
its content:

28

Java File - DemoFile.java
1 import java.io.BufferedReader;
2 import java.io.FileReader;
3 public class DemoFile {
4

5 public static void main(String args) {
6 readFileAndTakeAction(’c:/text.txt’, null);
7 }
8

9 /* Second parameter not used right now */
10 public static void readFileAndTakeAction(String fileName,
11 Object cloj){
12 BufferedReader bfIn = null;
13 try {
14 bfIn = new BufferedReader(new FileReader(fileName));
15

16 /* The actual reading & action */
17 String line = null;
18 while ((line = bfIn.readLine()) != null) {
19 System.out.println(line);
20 }
21

22 bfIn.close();
23 }
24 catch (Throwable e) {
25 e.printStackTrace();
26 }
27 }
28 }

On line 6 we call the method readFileAndTakeAction() which at this moment
uses only the fileName passed to it. The method then reads from the file text.txt
and prints out its content to the console on line 19.

If we now want to read from a file and do some other work on the content, we’d
probably have to copy and paste the method7, put a different name on it and
change the content between the while loop on line 19. Unfortunately, we’ve just
introduced redundancy to our code and changes are now harder to introduce
and maintain. For example, what if we change our mind on how an exception
needs to be handled?

With Groovy we don’t have to work that hard. Closures allows reusability
because we can pass a block of code (closure) to the method and execute it on
line 19 instead. So let’s do that:

We rename the file DemoFile.java to DemoFile.groovy, and change line 19 to:

19 cloj.call(line)

7Possibly created a switch statement that takes a String to determine what action to take.
But that’s just me.

29

cloj is the closure we are going to pass in the second parameter, and line is
the variable being read from the file in the while loop. We can now from the
main method call readFileAndTakeAction() and pass a closure to it in the
second parameter:

def fileName = ’c:/text.txt’ // Not empty

/* Number of chars on every line */
readFileAndTakeAction(fileName, { print it.size() + ’ ’ })

/* Number of total lines */
int i=0
def cloj = { i++ }
readFileAndTakeAction(fileName, cloj)
print i + ’ ’

/* Place the lines in a List */
List lst = []
readFileAndTakeAction(fileName, { myLine -> lst.add(myLine) })
print lst.size()

Output:
15 15 13 11 4 4

We can see from the output that there are 4 lines in text.txt and that each
line have 15, 15, 13 and 11 characters. We could continue give examples on
how we could reuse that same method with different closures, but this seems
unnecessary.

In the first example, we passed a closure directly to the method, and in it we
used the it keyword refering to the passed variable line in cloj.call(line).
In the third example we named the same parameter myLine. In the second
example we first assigned the Closure to a variable and then passed it on to
the method.

Notice how we on the second and third example had access to and could ma-
nipulate the variable i and lst from within the passed closure. If a closure is
defined inside a method, the closure will get access to all the variables that the
containing method can access itself such as local variables, method arguments,
class members and other methods [20].

The GDK is packed with tons of methods that makes life much easier thanks
to closures. In the File class alone there are 28 methods that makes use of
closures. And when it comes to our file example, similar functionality is of
course already among those methods, allowing us to do the above 28 lines in 1
line:

new File(’c://text.txt’).eachLine { println it }

eachLine() is here a single parameter method in the File class that takes
a closure, and since we stumbled in on it, we can also mention that excep-

30

tion handling is optional in Groovy. If the file doesn’t exist, we’ll get a
FileNotFoundException which have to be caught in a try/catch block, but if
we are certain the file does exist, we don’t have to.

6.2.3 Getting Information

The Closure class makes available a few useful methods. For example, how
many parameters a closure takes and what their types are, if declared.

def cloj = { int a, double b -> return (a + b) as double }

cloj.getMaximumNumberOfParameters() == 2 // True
println cloj.getParameterTypes()

Output:
[int, double]

6.2.4 Method Reference Pointer

The many similiarites between closures and methods are obvious and Groovy
recognizes this and allows us to reuse methods as closures but this is limited to
instance methods only. Below is an example:

class A {
int num

int sumWithNum(int a){
num += a

}
}
class B {

int callCloj(Closure cloj, int a){
cloj.call(a)

}
}
A a = new A(num:0) // Create an instance
B b = new B()

/* sumWithNum() called from class B */
int returnedSum = b.callCloj(a.&sumWithNum, 90) // Notice .&

println "Num from a : $a.num"
println "Returned sum: $returnedSum"

Output:
Num in a : 90
Returned sum: 90

31

In the above example, we passed a reference to A’s sumWithNum() method to B’s
callCloj(). Notice that since we passed the method reference from the instance
a, a’s property num will also be altered because the method sumWithNum() alters
it.

In Section 7 on p.44 we’ll see more powerful use cases of closures.

32

6.3 More on Methods

We’ve already covered much on how methods can be used in Groovy. Somethings
we’ve used and pointed out already, other’s been left out for this particular
section.

6.3.1 Optional Parantheses

We can for cleaner syntax call methods that take one or more parameter by
omitting the surronding parantheses (). For most part we’ve used the syn-
tax with the parantheses, but on print, println and not long ago on File’s
eachLine method we’ve omitted (). These are methods just like any other
method:

println(’Hello, World!’) // With parantheses

void method(def a, def b, def c){
print(a); print ’ ’; print(b + ’ ’); print c + ’\n’

}
method ’a’, ’b’, "c" // Without parantheses
method(’d’, ’e’, "f")
method 1, 2, 3

Output:
Hello, World!
a b c
d e f
1 2 3

6.3.2 Positional Parameters

Parameters in a method can be defined with a default value, to be used when a
call to that method is done with less parameters than it can take.

Groovy will look and match the parameters passed from left to right and if there
are less incoming parameters than can be passed, the default supplied values
will be used for those missing:

int method(a, b=100, c=1000){
a+b+c

}
method 1, 2, 3 == 1+2+3 // True
method(1, 2) == 1+2+1000 // True
method(1) == 1+100+1000 // True

33

6.3.3 Optional Parameters

We can define a method to take a dynamic amount of parameters:

void passed(a, Object[] optionals){
print ’Passed in parameters: ’ + a
for(o in optionals)

print ’, ’ + o
}
passed(1, 2, 3, 4, 5, "Hello!", 6, 7, 8, 9, 10)

Output:
Passed in parameters: 1, 2, 3, 4, 5, Hello!, 6, 7, 8, 9, 10

int sum(a, Object[] optionals){
for(o in optionals)

a+=o
a

}
sum(1) == 1 // True
sum(20, 1) == 21 // True
sum 100,10,1 == 111 // True
sum 100,10,10,10 == 130 // True

If we want to call a method with a List, we can use the spread operator *
which will distribute all items in a list onto the parameters of the method.

class C {
int sum(a, Object[] optionals){

for(o in optionals)
a+=o

a
}

/* Takes fixed amount of parameters */
int mod(a, b){

a%b
}

int doSomething(Closure cloj, Object[] optionals){
// Do stuff here we don’t want to repeat
cloj.call(*optionals) // Use of spread operator

}
}

C c = new C()

println c.doSomething(c.&sum, 3, 3, 3, 3)
println c.doSomething(c.&mod, 10, 2)

34

Output:
12
0

The method doSomething() is now more dynamic and can pass on calls to
any predefined method or closure. The spread operator can be used for other
purposes as well.

6.3.4 Mapped Parameters

A method can take named parameters as a map similar to how the Groovy
constructor can do. We define a method and call it:

/* Prints either firstName, lastName or both */
void printName(Map args){

if(args.toPrint == ’lastName’)
println args.lastName

else if(args.toPrint == ’firstName’)
println args.firstName

else if(args.toPrint == ’both’)
println args.firstName + ’ ’ + args.lastName;

}
printName toPrint:’lastName’, lastName:’Bond’, firstName:’James’
printName(toPrint:’both’ , lastName:’Bond’, firstName:’James’)

Output:
Bond
James Bond

6.3.5 Dynamic Method Call

We can call a method using a String as an identifier:

class D {
int numberVariable = 10

void methodOne(){
println ’One’

}
void methodTwo(){

println ’Two’
}

}

void caller(def obj, def methodName){
obj."$methodName"() // Use of GString

}

35

caller(new D(), ’methodOne’)
caller(new D(), ’methodTwo’)

Output:
One
Two

This could be yet a way to dynamically call a different action in our file example
earlier.

A property can be accessed in the same way, but this is usually done with the
subscript operator instead:

def str = "numberVariable"
new D()."$str" == 10 // True
new D()[str] == 10 // True (Subscript operator)

36

6.4 Meta-Object Protocol

Dierk König & al believes that, "in order to fully leverage the power of Groovy,
it’s beneficial to have a general understanding of how it works inside" [15] and
performs its magic. "Meta-programming means writing programs that manip-
ulate programs, including itself" (Venkat Subramaniam) [1]. The Meta-Object
Protocol (MOP) defined in the interface
groovy.lang.MetaObjectProtocol enables Groovy to dynamically change the
behavior of classes and objects at runtime.

Classes written in Groovy extends java.lang.Object by default as well as
implement the groovy.lang.GroovyObject interface:

public interface GroovyObject {
Object invokeMethod(String name, Object args);
Object getProperty(String property);
void setProperty(String property, Object newValue);
MetaClass getMetaClass();
void setMetaClass(MetaClass metaClass);

}

Every class, whether it’s a POJO (Plain Old Java Object) or POGO also have
an association to a MetaClass in Groovy. A MetaClass within Groovy defines
the behaviour of any Groovy or Java class and provides all information about a
class, such as its properties and methods. It can be used to invoke any method
on a class but also used to add or borrow methods and properties, add or
override constructors and more. The MetaClass also comes into action when a
property of an object is being referenced or a method is being invoked. Instead
of letting the objects handle the requests themselves, calls can be intercepted
and routed to the right MetaClass. Figure 2 on p.43 at the end of this section
illustrates how calls in Groovy are intercepted and handled.

6.4.1 Adding Methods & Properties

Adding methods8 and properties to any class is simple.

/* Add method sayHello() to String class */
String.metaClass.sayHello = { lang ->

if(lang == ’English’) println ’Hello’
else
if(lang == ’Swedish’) println ’Hej’

}

/* Add method isOdd() for class Integer */
Integer.metaClass.isOdd = {

/* Delegate refers here to the caller Object */
(delegate % 2) as Boolean

}
8What we meant to say was closures

37

/* We can dynamically add methods to our own classes as well */
class Person{

String fName, lName
}
Person.metaClass.getFullName = { lName + ", " + fName }

’We can call say hello on any String now’.sayHello(’Swedish’)
println 3.isOdd()
println new Person(fName:’James’, lName:’Bond’).getFullName()

Output:
Hej
true
Bond, James

If we wish to add a method for all objects, we can simply add it to the MetaClass
of Object. The method isOdd() that was added on Integer could be defined
as a Closure in one place first and added to its cousins Short and Long as well.

Adding a property to any class is no different:

Integer.metaClass.numberOne = 1
99.numberOne == 1 // True

Note that we can expand and build not only on the entire class but on stan-
dalone instances with methods and properties as well:

String a = ’String instance a’
String b = ’String instance b’

/* Add property demoProperty on instance a */
a.metaClass.demoProperty = ’value’

a.demoProperty == ’value’ // True
b.demoProperty // MissingPropertyException

To add a static method to class Integer, we can do:

Integer.metaClass.static.isEven = { val -> !val.isOdd() }
Integer.isEven(5) == false // True

Notice that we where passing the value 5 in the method call, where we then
could use it to call the instance method isOdd() defined earlier.

38

6.4.2 Add Constructor

To add a new constructor that takes a Date to the class String we can use the
leftshift operator <<. To add or override a constructor we can use =. Overriding
an already existing constructor using << will result in an error.

String.metaClass.constructor << { Date date ->
/* Get the constructor that takes String */
def constructor = String.getConstructor (String)
return constructor.newInstance(date.toString())

}
String str = new String(new Date())
println str

Output:
Thu Sep 03 19:10:29 CEST 2009

Notice how we can fetch a constructor using reflection. Of course in this case,
returning date.toString() would have been enough.

6.4.3 Intercepting Method Calls

There are a number of ways we can intercept and act on method calls for any
class. Intercepting is valuable when we want to change the behaviour of a
method call, for example by routing to a new implementation, or perhaps to fix
a bug in a method by checking its input first.

One way is to implement the GroovyInterceptable interface, which is a marker
interface used to notify that all methods should be intercepted through the
invokeMethod() mechanism of GroovyObject. We can then implement the
method invokeMethod() which will hijack all method calls to the class, in
which we can have some logic and act. This approach however, won’t work
if we are not the authors of the class and don’t have the priviligies to modify
it. We might also decide at runtime to start intercepting calls based on some
condition or application state.

Another way is to use the MetaClass available in all classes. To intercept calls
on a class we implement the method invokeMethod() through the metaClass
object.

39

Say that we’ve decided that String’s toString() method must always return
in lowercase. We can either do a complete re-implementation of the toString()
method, or we can intercept the calls to it and make sure we call toLowerCase():

String.metaClass.invokeMethod = { methodName, methodArgs ->
if(methodName == ’toString’){

return delegate.toLowerCase ()
}
else {

/* Retrieve method for the given methodName and arguments */
MetaMethod otherMethod =

String.metaClass.getMetaMethod (methodName, methodArgs)

/* Method exists in the String class. Call it. */
if(otherMethod)

return otherMethod.invoke (delegate, methodArgs)
else

return String.metaClass.invokeMissingMethod (delegate,
methodName, methodArgs)

}
}

We call toString():

print ’AbC’.toString()
’XYZ’.methodDontExist() // MissingMethodException

Output:
abc

When any method is being invoked now in the String class it will go through the
logic defined in invokeMethod(). That is why it’s important to handle and route
other method calls as well, as done in the first else statement. There we attempt
to fetch the called method using the name of the method and the supplied
arguments. The arguments are necessary to identify the right method due to
the possibility of the method being overloaded, such as String’s 9 different
valueOf() methods.

Note that had the toLowerCase()method internally called String’s toString()
we’d probably end up with an infinite loop between the invokeMethod() and
toLowerCase() methods, to finally get a java.lang.StackOverflowError.

6.4.4 Getting Information

Discovering The Class

Every object in Java has a getClass() method. In Groovy, we can shorten the
call to class and we’ve used this syntax several times already.

def str = ’1’
println str.class

40

Output:
java.lang.String

Once we have the class we can ask it all sorts of questions.

Discovering Properties

class Person { String fName, lName }

On the class:

Person.properties.each { println it }

Output:
constructors=[Ljava.lang.reflect.Constructor;@142022d
superclass=class java.lang.Object
interface=false
primitive=false
...

On a Person instance:

new Person(fName:’James’).properties.each { println it }

Output:
fName=James
class=class Person
lName=null
metaClass=org.codehaus.groovy.runtime.HandleMetaClass@8e2fb5...

Notice how the metaClass property have been added.

Discovering Methods

String.methods.each { println it }

Output:
public int java.lang.String.compareTo(java.lang.String)
public int java.lang.String.indexOf(java.lang.String,int)
public boolean java.lang.String.endsWith(java.lang.String)
...

41

Discovering Constructors

String.constructors.each { println it }

Output:
public java.lang.String()
public java.lang.String(java.lang.String)
public java.lang.String(char)
...

Discovering Interfaces

We can also get the interfaces a class implements:

String.interfaces.each { println it }

Output:
interface java.io.Serializable
interface java.lang.Comparable
interface java.lang.CharSequence

There are many more methods we can use to work with Groovy’s MOP such
as hasProperty(), respondsTo(), setMetaProperty, invokeStaticMethod,
isModified() and more.

42

Figure 2: Working with the MOP [9]

43

7 Collections (List, Range, Map) and Iterative
Object Methods

Working with collections in Groovy is much easier and more fun than it’s in
Java. It’s easier to create, add, iterate and manipulate them.

Venkat Subramaniam says, "Groovy takes the already powerful Java collections
and makes their API simpler and easier to use". Several convenience methods
have been added, many effectively using closures as parameters [1].

With Range we can create a list of values on the fly, which can then be used or
passed around as a List because Range extends java.util.List.

7.1 List

A List in Groovy is actually a java.util.ArrayList. It’s however easier to
declare and use:

/* Create a new List */
List lst = [’a’, ’b’, ’c’]

lst.each { println it }

Output:
a
b
c

First we created a list with some initial values. Then we iterated over them
with the iteration method each() and applied println it by passing code as
a closure. All possible thanks to closures.

lst was on creation populated with values of type String but a List can have
elements of any object type. It’s not bound and can also be of mixed types.

There are a number of ways we can add, remove and modify the content of a
List.

Add

1 def lst = [] // Declared empty list
2

3 /* Add */
4 lst += ’c’ // lst += [’c’] does the same
5 lst += [’d’, ’e’]
6 lst.addAll(0, [’a’,’b’]) // Add first
7

8 lst == [’a’,’b’,’c’,’d’,’e’] // True
9

10 lst.eachWithIndex { e, i -> println "${i}: ${e}" }

44

Output:
0: a
1: b
2: c
3: d
4: e

Notice how the iteration method eachWithIndex() takes a closure which in
turn requires passing of two parameters. One for the element and one for the
index. On line 5 it appears as of we attempted to add a List to another List
but what happened whas that only the elements of the other was added.

If we instead wish to insert a List into another List we can use the shift
operator << or Java’s add() method:

List lst= []
lst << [’b’, ’c’]
lst.add(0, [’a’]) // Add first
lst += [’d’, ’e’]

lst == [[’a’], [’b’, ’c’], ’d’, ’e’] // True

lst.flatten().eachWithIndex { e, i -> println "${i}: ${e}" }

Output:
0: a
1: b
2: c
3: d
4: e

Notice lst before the call to flatten() and then look at what’s being output.

Remove

def lst = [’a’,’b’,’c’,’d’,’e’,’f’, ’g’]

/* Remove by content */
lst -= ’d’
lst -= [’f’ ,’x’, ’y’, new Integer(1), 2, ’e’ , "g"]

lst.reverseEach { println it }

Output:
c
b
a

reverseEach() takes a closure and goes through the elements from the end.

45

List lst = [’a’,’b’,’c’,’d’,’e’]

/* Remove by index */
lst.removeRange(1,3) // Removes ’b’ and ’c’ (Excluding to)
lst.remove(0) == ’a’ // Removes & returns the element

lst.isEmpty() // False

lst.removeRange(1, 100) // IndexOutOfBoundsException
lst.remove(100) // IndexOutOfBoundsException

Read & Modify

List lst = [4, 6, 7, 8]

/* Modify */
lst[0] = 5 // Change value on index

/* Read */
lst.first() == 5 // True
lst.last() == 8 // True

lst[1] == 6 // True (Get by index)
lst[-1] == 8 // Negative index reads from the back
lst[1..3] == [6, 7, 8] // True (Using Range)
lst[3, 0, 1] == [8, 5, 6]

lst.pop() // Removes and returns last
lst.push(9) // Same as lst << 9 and lst.add(9)

lst[100] // Returns null
lst.get(100) // IndexOutOfBoundsException

Many of the methods, such as add() and addAll() are the same methods
that can be found in java.util.ArrayList. Remember that "Groovy is a
complement of the Java programming language, not a replacement of it" [8].

Other

Groovy offers many convenience methods for operations that might be handy at
occasion for a developer. Many of these can be found in java.util.Collections,
often with a new approach but some are new. Here is a few in example:

/* All conditions below are true */

def lst = [’b’, ’c’, ’a’, ’aa’]

lst.sort() == [’a’, ’aa’, ’b’, ’c’] // Modifies lst

lst.reverse() == [’c’, ’b’, ’aa’, ’a’]

46

lst.contains(’aa’) == true

lst.size() == 4

lst.find { it > ’b’ } == ’c’

lst.findAll { it >= ’ab’ } == [’b’, ’c’]

lst.collect { it.toUpperCase() } == [’B’, ’C’, ’A’, ’AA’]

[2, 4].collect { it*3 } == [6, 12]

[2, [3,5], 4].flatten() == [2, 3, 5, 4]

[’c’, ’b’, ’a’, ’a’].intersect([’a’, ’x’, ’b’]) == [’a’, ’b’]

[’a’, ’b’, ’a’].unique() == [’a’, ’b’] // Modifies list

[1, 2, 3].sum() == 6
[’Apple’,’p’, ’i’,’e’].sum() == ’Applepie’

[’Apple’,’p’, ’i’,’e’].join(’’) == ’Applepie’

List syncedList = lst.asSynchronized()

The iterator methods find() and findAll() will find the first, respectivly all
values matching the closure condition.

collect() will invoke and apply the passed closure on all elements, collect the
values into a collection and finally return the modified collection.

7.2 Range

Groovy offers a native datatype for ranges. We can store a range in a variable
or create and use them on the fly.

A range is defined by a start and end point. Ranges are specified using the
double dot .. range operator between the left and right bound [15].

def rng = (1..4)

rng.each { print "$it " }

Output:
1 2 3 4

We defined a range rng using the def keyword from 1 up to and including 4
and iterated over them using each. (1..<4) will specify the range excluding the
value on the right side, in this case 4.

47

Range’s are very flexible. Any datatype can be used, provided that they imple-
ment the java.lang.Comparable interface, compareTo(), as well as a next()
and previous() method [15].

Character and Date for example have this functionality added already:

(’d’..<’k’).each { print "$it " }

Output:
d e f g h i j

With date:

Date today = new Date() // Friday today
Date sunday = today + 2

(today..sunday).each { print "${it.day} " }

Output:
5 6 0

A week in Java starts on Sunday(0) and ends on Saturday(6).

48

7.3 Map

Map’s are useful when we want to work with an associative set of key and value
pairs.

Create, Assign, Remove and Read

Creating a Map in Groovy is simple. There is no need to use new or specify any
class name:

/* Create */
Map mp1 = [:] // Empty map
def mp2 = [a:1, ’b’:2, c:3, "d":4] // Map with key:value pairs

/* Assign */
mp1.a = 1
mp1.’b’ = 2
mp1[’c’] = 3
mp1 += [d:4]

mp1 == mp2 // True

/* Remove by key */
mp1.remove(’a’) // Returns 1 (Removes a:1)

/* Remove by value */
mp1.values().remove(2) // Returns true (Removes b:2)

mp1 == [c:3, d:4] // True

We can see that a Map can be created, manipulated and read ’on the fly’.

Assigning and reading are done with the subscript operator mp1[’c’] or via the
dot.key mp1.a syntax.

A key is by default of type String when a new Map is being declared, unless the
key is wrapped with parenthesis () which means the key is an object:

Object a = new Object()
Map mp3 = [(a):’txt’, a:1, b:2]

/* Read */
mp3.’a’ == 1 // True (String key)
mp3.a == 1 // True (String key)
mp3.(a) == 1 // True (String key)
mp3[’a’] == 1 // True (String key)
mp3[a] == ’txt’ // True (Object a as key)

mp3[’b’] == 2 // True (String key)
mp3[b] == 2 // MissingPropertyException

49

To read, assign or modify an object:value pair we must use the subscript
operator, and this without quotes.

Quotes are otherwise a requirement when using the subscript operator. Notice
how mp3[’b’] works fine while mp3[b] throws a MissingPropertyException
because we used an undefined object as a key

The dot.key syntax will always refer to a String key, no matter the parantheses.

LinkedHashMap

Groovy makes working with Map’s simpler and more elegant with the use of
closures. We can use the iterative each() method for maps in two ways.

Passing one parameter means that it’s an entry, passing two that it’s a key and
a value pair.

Of course, the order can never be guaranteed because maps in Groovy are by
default of type java.util.HashMap, but a different type of Map can be declared
explicitly by calling the respective constructor [15]. The previously mentioned
operations should work with all Map types.

If order is a requirement, we can use a java.util.LinkedHashMap:

Map countries = new LinkedHashMap()
countries += [Sweden:’Stockholm’, Lebanon:’Beirut’, France:’Paris’]

countries.each { country, capital ->
println "$country:\t$capital"

}

println ’’

countries.each {
println "$it.key:\t$it.value"

}

Output:
Sweden: Stockholm
Lebanon: Beirut
France: Paris

Sweden: Stockholm
Lebanon: Beirut
France: Paris

Notice how we used the each() method for maps in two different ways. Either
by naming the key:value, or just use the keyword it and refer to it.key and
it.value. The each() method is available for java.util.HashMap as well.

50

Other

/* All conditions below are true */

/* All countries */
def keys = countries.keySet()

/* All capitals */
def vals = countries.values()

countries.containsValue(’Stockholm’) == true

countries.containsKey(’Monaco’) == false

countries.Monaco = ’Monaco’ // Add

/* Countries with the same name as their capitals */
countries.findAll { it.key == it.value } == [’Monaco’:’Monaco’]

countries.size() == 4

countries.isEmpty() == false

Map syncedMap = countries.asSynchronized()

51

8 Other

8.1 Groovy Switch

The switch statement in Java is restricted to int, short, char and byte. Since
Java 5 there is also support for enums [15].

The Groovy switch statement is similar to Java’s in approach and syntax, but
can take any object in addition. The case labels will accept all objects that
implements the isCase() method.

Class Condition for true
Object a == b
Class a instanceof b
Collection b.contains(a)
Range b.contains(a)
Pattern b matches in a?
String a == b
Closure b.call(a)

Table 2: Classes that implements isCase(b) in the GDK for switch(a)

Usage in example:

doSw(’txt’); doSw(8); doSw(3); doSw(5); doSw(7); doSw(10.0)

void doSw(def a){
switch(a){

case ’txt’ : print ’1’; break // String
case {it+1==9} : print ’2’; break // Closure - Returns true?
case [1,2,3] : print ’3’; break // List - a in [1,2,3] ?
case 4..6 : print ’4’; break // Range - a in [4,5,6] ?
case Integer : print ’5’; break // instanceof Integer ?
case ~/\d+.\d+/ : print ’6’; break // Pattern - is Double ?
default : print ’-’

}
}

Output:
123456

52

8.2 Groovy SQL

Working with SQL in Groovy is a true delight. By making use of closures,
Groovy SQL will take care most of the work we normally have to deal with
when working with JDBC and lets us focus on building and running queries
instead.

Connect

We connect to MySql database:

import groovy.sql.Sql // Must be imported

/* Connect to database */
Sql sql = Sql.newInstance (

’jdbc:mysql://localhost:3306/name_of_your_db ’, ’root’,
’your_password ’, ’com.mysql.jdbc.Driver’)

Note that we’ll need to have the JDBC drivers for MySql available9.

Create

Below we create a table member with an id and two columns, username and
password using the method execute():

sql.execute ’’’
CREATE TABLE IF NOT EXISTS member(

id INT AUTO_INCREMENT PRIMARY KEY,
username varchar(30) NOT NULL,
password varchar(30) NOT NULL

)’’’

Insert

We populate the table with three members using the method execute():

List members = [
[username:’james’, password:’password1’]
[username:’peter’, password:’password2’]
[username:’sarah’, password:’password3’]

]
members.each{ memb ->

sql.execute """INSERT INTO user(name, password)
VALUES (${memb.username}, ${memb.password})"""

}

9Not to mention having MySql installed as well

53

Read

Reading can be done with methods query(), firstRow(), rows() and eachRow().
Here is the latter two in example:

/* Fetch all matching rows */
List res = sql.rows ’’’SELECT * FROM member WHERE username = ?

AND password = ?’’’, [’james’, ’password1’]

/* Fetch all matching rows & process with the closure */
sql.eachRow (’SELECT * FROM member’) { // Do something here }

Update

def username = ’sarah’
def newUName = ’maria’

def up = sql.executeUpdate """UPDATE member
SET username = $newUName WHERE username = $username"""

def ex = sql.execute """UPDATE member
SET username = ? WHERE username = ?""", [newUName, username]

println "Returned from update : $up"
println "Returned from execute: $ex"

Output:
Returned from update : 1
Returned from execute: false

The execute() method can be used to create, insert, update and delete and will
return true for successful operation and false otherwise.

The executeUpdate()method will return the number of rows that was updated.

A query that’s of type GString or a String with placeholders will when passed
to the right method be used to produce a prepared statement and are therefore
automatically secured against SQL injection attacks.

54

8.3 File

Groovy follows Java’s approach by using the File class for both files and di-
rectories with a File object representing a location. Groovy also adds several
convenience methods, effectivly using closures as parameters to the File class.

The best way to demonstrate how to use the File class is through examples.
Keep in mind that there are much more that can be done and that we’re only
showing a portion of it, with focus on what Groovy brings to the table.

Traverse

File file = new File(/c:\program files\java/)
file.isDirectory () == true // True
file.isFile () == false // False

/* Directories directly under c:\program files\java */
file.eachDir { println it.path }

/* Files & directories directly under ... */
file.eachFile { println it.path }

Output:
c:\program files\java\jdk1.6.0_13
c:\program files\java\jre6
c:\program files\java\jdk1.6.0_13
c:\program files\java\jre6
c:\program files\java\readme.txt

Notice that eachFile() will traverse both files and directories while eachDir()
only directories.

int nbrOfDirs = 0
int nbrOfFilesAndDirs = 0
/* Traverse all directories in ... */
file.eachDirRecurse { nbrOfDirs++ }
/* Traverse all files & directories in ... */
file.eachFileRecurse { nbrOfFilesAndDirs++ }

println ’Number of directories : ’ + nbrOfDirs
println ’Number of files and directories : ’ + nbrOfFilesAndDirs

Output:
Number of directories : 512
Number of files and directories : 3868

55

int nbrOfFiles = 0
int nbrOfReadMeFiles = 0
/* Count only files. We check for file in Closure. */
file.eachFileRecurse {

if(it.isFile ()) nbrOfFiles++
}
/* Count number of readme.txt files */
file.eachFileRecurse {

if(it.isFile() && it.name.toLowerCase () == ’readme.txt’)
nbrOfReadMeFiles++

}

println ’Number of files : ’ + nbrOfFiles
println ’Number of readme.txt files : ’ + nbrOfReadMeFiles

Output:
Number of files : 3356
Number of readme.txt files : 41

Create & Write

We can create directories, files and write to files in a number of ways. Easiest
is by demonstrating using examples:

String path = /d:\exjobb\myDir/

/* Create directory myDir in exjobb */
new File(path).mkdir () // Returns true (If doesn’t exist)

/* Create file one.txt in d:\exjobb\myDir */
File one = new File(path, ’one.txt’)
one.createNewFile () // Returns true (If doesn’t exist)

/* All will also create the file if doesn’t exist */
new File(path, ’two.txt’) << ’Line 1 in two.txt’ // Append
new File(path, ’two.txt’) << ’\nLine 2 in two.txt’ // Append
new File(path, ’two.txt’).write (’’) // Overwrites (Now empty)

Read

String javaPath = /c:\program files\java\jdk1.6.0_13/
String myDirPath = /d:\exjobb\myDir/

File copyright = new File(javaPath , ’COPYRIGHT’)
File one = new File(myDirPath, ’one.txt’)

/* Copy content into one.txt */
one.write copyright.text // getText()

/* Compare the size between the two files */

56

copyright.size () == one.length() // True

/* Read line by line & put in lst */
List lst = []
one.eachLine { line -> lst += line }

/* readlines() method returns content in a List */
one.readLines () == lst // True

Delete

/* Delete file */
new File(/d:\exjobb\myDir\one.txt\).delete () // True

/* Delete directory with all files & subdirectories */
new File(/d:\exjobb\myDir/).deleteDir () // True

There are many more ways to work with File, both through the GDK and in
Java’s standard java.io.File.

8.4 Exception Handling

Scott Davis points out that "exceptions such as NullPointerException,
ClassCastException, and IndexOutOfBoundsException might be thrown by
a method, but the compiler doesn’t require us to wrap them in a try/catch
block. The Java documentation for java.lang.Error says that we don’t have
to catch these sorts of exceptions since these errors are abnormal conditions
that should never occur" [7].

He continues, it’s nice that Java allows this subtle disctinction but it’s unfor-
tunate that developers don’t get to decide this themselves. Especially when
developers often silently accepts the autogenerated code their IDE autogener-
ates which is often an empty catch block with a TODO tag, just to keep going
with their work [7]. The result is lots of empty catch blocks in many places.

Ultimately, Groovy gives us the power to decide. But with great power comes
great responsibility [26]. So the reponsibility to handle this well is passed onto
the developer which now have to know when it’s good to catch and when not.
Although we are never forced to catch an exception, it makes sense to catch
an exception in a lot of scenarios.

8.5 Other

There are many more features in Groovy, but writing a 700 pages book (like
Groovy in Action) is not the scope of this document. Hopefully you now have
an idea of what Groovy can do in a Java environment.

57

9 Introduction to Grails

The web has gotten more complex over the years and to develope competetive
Web applications is hard. Todays internet environment with applications in
the Web 2.0 category involves and requires the knowledge of many technlogies
such as HyperText Markup Language (HTML), Cascading Style Sheets (CSS),
Asynchronous JavaScript and XML (Ajax), XML, Web Services, programming
languages, design patterns, frameworks and databases to mention a few [4].

"The Java Enterprise Edition (JEE) that build on the solid foundation of the
Java Platform, Standard Edition (Java SE), is the industry standard for imple-
menting enterprise class service-oriented-arhitecture (SOA) and next-generation
Web applications" [18]. Christopher M.Judd & al means that "Java EE has
proven over and over again that it was not written with an application level
of abstraction in mind but rather focuses on a much lower technical level" [4].
He continues, "While the platform has proven to be scalable and robust", the
development cycle of coding, compiling, packaging, deploying, testing and de-
bugging requires developers to switch context too frequently to allow for fast
agile development with less productivity as a consequence [4]. Java EE also has
a very steep learning curve, making it hard to adopt for developers outside the
business environment.

For the last couple of years, the Java community have been trying to solve
these issues with bulding applications using JEE by developing many different
application framworks in order to better utilize JEE. Most popular of these are
frameworks Spring and Hibernate. These frameworks provide an abstraction
and a ligthweight approach to Java Web application development, but are still
being critized for being overly complex.

That’s where Grails comes into the picture.

Christopher M.Judd & al believes "Grails is the natural next step for Java EE
developers. If Spring and Hibernate provided an abstraction over Java EE and
simplified development, then Grails is an abstraction over Spring, Hibernate,
and JEE". Grails was influenced by other dynamic frameworks such as Django,
TurboGears [4] and especially the way Ruby on Rails pioneered the innovative
coupling by combining a powerful programming language with a framework
"that favors sensible defaults over complex configuration" (Jason Rudolph) [5].

"Developers praise the revolutionary Rails framework for its productivity level"
(Jason Rudolph) [5]. But with many organizations already running on the safety
of Java to power their applications, switching to Rails is often a long and risky
path to go. Something as productive as Rails was therefore needed for the Java
platform.

Grails is a complete Web framework built to take advantage of proven and
established technologies such as JEE, Spring, Hibernate, SiteMesh and of course
Java and Groovy on the JVM.

Grails uses and exposes each of these frameworks and their capabilities via a
simplified interface to make them simpler to use but continues to allow the usage
of them through their documented configuration and development capabilities

58

Figure 3: Grails framework

should we need to [11].

Grails applications are packaged as traditional compliant Java EE WAR (Web
Application Archive) file that can be deployed on any Java application server
such as Tomcat, JBoss or WebLogic. But Grails already come bundled with the
powerful Jetty Server and the HSQLDB in-memory database, enabling us to be
productive without any external, additional resources.

There is also a plugin system that enables developers to extend and embrace
the Grails philosophy of convention over configuration. Christopher M.Judd &
al describes this as an idea that was "based on the success seen by other open
source projects, like the Firefox browser, in allowing the user community to add
to the core platform" [4]. There are over 300 plugins available already today.

Graeme Rocher & al writes, "Grails embraces concepts such as Convention over
Configuration (CoC), Don’t Repeat Yourself (DRY) and sensible defaults that
are enabled through the language of Groovy and an array of domain specific
languages (DSLs)" [11]. With this Grails is able to provide a high productivity
Web framework for the Java platform that is consistent, reduces confusion, is
easy to learn and use which will ultimately make our lifes easier by enabling us
to focus time and effort on developing our application.

What Groovy does for Java development, Grails does for Web development.

59

10 Getting Started

In this section we will try to introduce how the Grails framework is structured
with som brief information. We’ll also cover how to configure the database,
create, and run a new application. But first you are going to need to have
Grails installed.

10.1 Installing Grails

Installing Grails is easy. A prerequisite is having Groovy installed. Refer to
Section 3.1 on p.9 if this isn’t fullfilled.

This document is based on Grails version 1.0.3. It’s therefore recommended
when going through this document to have this version installed in order for the
topics and examples described to work as expected.

This guide for installing Grails 1.0.3 is applicable for Windows and Unix like
systems. There are installers available but this guide is based on the binary
release version in zip format, which is platform independent and the recom-
mended way to install Grails.

1. Download the binary release version in zip format of Grails 1.0.3 from
http://www.grails.org/download/archive/Grails.

2. Extract the content from the downloaded zip file into a location of your
choice. In c:/ will do just fine on a Windows system. You should now
have a folder c:/grails-1.0.3.

3. Create the environment variable GRAILS_HOME and let it point to the ex-
tracted directory. For example c:/grails-1.0.3.

4. On a Windows system: Add %GRAILS_HOME%/bin
On a Unix like system: Add $GRAILS_HOME/bin
to the PATH environment variable.

5. Open up a new command prompt or terminal and enter
» grails -version.
If properly installed, you should see output similar to:

Welcome to Grails 1.0.3 - http://grails.org/
Licensed under Apache Standard License 2.0
Grails home is set to: c:/grails-1.0.3
...

10.2 Editors for Groovy and Grails

Please refer to Section 3.3 on p.10.

60

http://www.grails.org/download/archive/Grails

10.3 Grails Commands

Assuming Grails is properly installed we should be able to run the command:

» grails help

Output:
...
grails bootstrap
grails bug-report
grails clean
grails compile
grails console
grails create-app
grails create-controller
grails create-domain-class
grails create-integration-test
grails create-plugin
grails create-script
grails create-service
grails create-tag-lib
grails create-unit-test
grails doc
grails generate-all
grails generate-controller
grails generate-views
grails help
grails init
grails install-plugin
grails install-templates
grails list-plugins
grails package
grails package-plugin
grails plugin-info
grails release-plugin
grails run-app
grails run-app-https
grails run-war
grails set-proxy
grails set-version
grails shell
grails stats
grails test-app
grails upgrade
grails war

These are the commands that can be run from the commad line in Grails. We
will in this document use and demonstrate only a few of these, more precisely
those that are highlighted.

61

10.4 Create Application & Grails Directory Structure

Let’s start by creating a new application called demoApp in d:/exjobb.

» cd d:/exjobb

Create application demoApp:

» grails create-app demoApp

Output:
...
Created Grails Application at D:\exjobb/demoApp

The directory demoApp has the directory structure seen in figure 4.

Figure 4: Grails directory structure

Below follows an overview of the structure and concept behind this with brief
comments on some important directories and files in Grails.

grails-app

62

This is the main and core directory of the Grails application. Controllers, do-
main classes, views, services, internationalization(i18n) files, configuration files,
taglibraries are all contained here.

conf

Contains 2 configuration files. config.groovy for various application settings, and
DataSource.groovy for database configuration.

A startup script Bootstrap.groovy that enables us to prerun code upon start of
the application.

A URLMappings.groovy file that allows us to alter how incoming requests should
be delegated based on the URL.

controllers

Application controllers that handle and take action on incoming requests is
contained in this directory.

domain

Groovy domain classes that uses GORM (Grails Object Relational Mapping)
to map objects and properties from the Object Oriented world onto tables and
columns in a relational database.

views

Holds Groovy Server Pages (GSP) or JSP views, templates and layouts which
are responsible for rendering the interface, typically HTML in aWeb application.

A subdirectory is normally created for each created controller to be used by us
to hold the controllers related views and templates.

The file error.gsp is also contained in this directory and should be modified to
show a customized error message to the user before going live with your appli-
cation, should an error or exception occur. By default it will show valuable in-
formation about exceptions that happens during the development cycle. Errors
can also be delegated to render another view through the URLMappings.groovy
file in the grails-app/conf directory.

taglib

Contains custom dynamic tag libraries that we create, which provide a clean
way to separate concerns between view and controller logic and allows us to
create well formed markup code in views.

i18n

Contains internationalized message bundled files message_xy.properties with
message codes that can be rendered to the user based on the Locale set for a
user.

63

By default there are 11 files covering languages from English to Chinese that
contains standard error messages. Other language files is created by creating a
file and replacing xy with the appropiate locale, i.e. message_ar.properties for
Arabic.

src

Contains two directories to place additional Groovy and Java source files.

lib

Additional JARs required by the application such as JDBC drivers for the
database goes in here.

test

Holds test classes for both integration and unit testing.

webapp

Static application resources such as static HTML, images, JavaScript and CSS
files.

Grails already includes and integrates popular JavaScript libraries Prototype
and Scriptaculous and makes their usage easier through already written tag
libraries.

This folder also contains the file index.html that shows the ’Welcome to Grails’
page which we’ll see next.

Although Grails is an MVC framework that have models, views, and controllers
to cleanly separate concerns, "if web applications were as simple as the MVC
pattern, all this would be unnecessary. As it is, they are not, and Grails provides
these features to ease commonly recurring problems" (Graeme Rocher) [10].

10.5 Run Application & Database Configuration

New and young developers often find it discouraging having to deal with several
prerequisites such as finding, choosing, installing and working with configuration
files. Often in unexplored fields before even gotten so far as to learn the actual
framework. Surely some of those things are important at some point, but they’re
also a hinder that stops them from stepping into the learning cycle and getting
creative.

So Grails comes bundled with everything we need to begin devoloping, testing
and learning. Grails embeds the powerful web container Jetty and the tempo-
rary in-memory relational database HSQLDB which are already configured and
ready to be harnessed from start.

64

We’ve already created a demo application. Let’s run it now:

» cd demoApp
» grails run-app

Output:
...
Note: No plugin scripts found
Running script c:\grails\scripts\RunApp.groovy
Environment set to development
...
Server running. Browse to http://localhost:8080/demoApp

The application is now running on localhost, port 8080. By pointing our
browser to the address http://localhost:8080/demoApp, we should be able
to see something similar to Figure 5.

Figure 5: Running application

To skip having to type demoApp at the end of the URL, as should be in produc-
tion mode anyway, we can set the property app.name in application.properties10

like this:

app.name=/

The old value was demoApp. If we restart the application now, we should be
able to reach it directly under http://localhost:8080.

To run the application on a different port:

» grails run-app -Dserver.port=80
10application.properties is located in the application top(root) directory

65

http://localhost:8080/demoApp
http://localhost:8080

There is also a Grails console which can be a valuable resource when getting
familiar with Grails. It can be used to run scripts and have access to many
things in the Grails application.

» grails console

The highlighted line in the command output before, says that the environment
is set to development(dev) mode. That’s the default environment which is
not intended to scale or support the load necessary in a production(prod)
environment [4]. Grails also adds a third environment by default, test(test).

When configured in development or test mode, auto-reloading is enabled. This
is to keep up with and make effective changes done in the codebase without the
need for an application restart11.

In production mode this feature is disabled to increase performance and mini-
mize potential security risks [11].

Running Grails in a different environment is remarkably simple. For in-
stance, the following command will run a Grails application with the production
settings:

» grails prod run-app

Each environment can also be used to run separate database configurations.
This is done in the DataSource.groovy file which can be seen in Appendix A.1.1.

Configuration of the data source is optional but the important parts to con-
sider changing initially are lines 3-5 to set the driver class name, username and
password. Also lines 16-17 for configuration of the development environment.
Here’s the last two properties on line 16-17 explained:

dbCreate

create-drop: Drop and create the database schema on every application start
create: Create database schema if it doesn’t exist on application start and
don’t modify it if it does. Will delete existing data
update: Create & attempt to update existing database schema on application
start

The default value is set to create-drop which can prove useful for testing,
because we start off with a clean set of data each time. But let’s change this to
update so we don’t have to re-populate the DB with data on every application
restart:

16 dbCreate = "update" // one of ’create’, ’create-drop’,’update’

11Although there are occasions where this is necesseary

66

url

The orginal value jdbc:hsqldb:mem:devDB is fine, but stores in memory only
and will make stored information disappear on shutdown.

We need to change this so that data is written to a file instead. Then we are able
to shutdown and restart our application and still reach our previously stored
data.

17 url="jdbc:hsqldb:file:devDB"

HSQLDB in all honour, but at some point later on we are going to need to
configure Grails with a more powerful database. Grails supports a wide range
of avalaibale databases, from Oracle to MySQL. Here is the corresponding lines
for setting Grails up with PostgreSQL:

3 driverClassName = "org.postgresql.Driver"
4 username = "postgres"
5 password = "your_password "

16 dbCreate = "update"
17 url = "jdbc:postgresql://localhost:5432/name_of_your_db "

Of course we’ll need to add the PostgreSQL JDBC drivers postgresql-8.3-604.jdbc4.jar
(for version 8.3-604) in the lib directory.

67

11 MVC model in Grails

Grails is an MVC framework, which means an application is partitioned into
tiers following the MVC pattern with models, views, and controllers to separate
business logic from presentation cleanly.

Figure 6: Grails default runtime environment [4]

A user performs a request through the browser to our application server. Based
on the incoming URL, the request will be delegated to the right controller
were we should have our initial logic. This could be logic to validate incoming
parameters, check if a user is allowed access, interact with the database through
our defined domain model, etc. In the controller we also decide what view render
and pass the needed information to it. The view is responsible for rendering the
interface, typically HTML in a web application.

This separation of logic into models, views and controllers enables us to change
the look of our application without accidently modifying its behavior.

What’s important to know is that there isn’t one definition of MVC. Grails is
built on Spring MVC since Spring is the underlying framework. "Spring MVC
might not be the simplest framework to use but it’s definitely one of the most
extensible, making it perfect for Grails to build on" [22]. Grails doesn’t try
to reinvent the wheel but rather seeks to improve whenever there is room for
improvement.

11.1 Domain

Like other Java MVC frameworks, Grails have models, referred to as domain
classes but unlike other MVC models, "Grails domain classes are automatically
persistable and can even generate the underlying database schema" (Christopher
M.Judd & al) [4]. Grails treats the domain classes as the central and most

68

important component of the application. Domain classes resembles very much
to what Java and Groovy developers are familiar with when defining classes but
here we are actually defining the SQL schema.

Business logic in Java applications uses objects with properties, fields, and meth-
ods to represent data while databases store relational data in a table format
consisting of rows and columns. There are pure Object Oriented Database
Management Systems (ODBMS) that dump the concept of tables all together
but Relational Database Management Systems (RDBMS) are still by far the
most widely used databases [25].

Grails builds on Hibernate which provides an Object Relational Mapping (ORM)
solution for applications. Explaining ORM, Graeme Rocher says, "ORM simply
serves as a way to map objects from the object oriented world onto tables in a
relational database. ORM provides an additional abstraction above SQL, allow-
ing developers to think about their domain model instead of getting wrapped
up in reams of SQL" [10], managing constraints, foreign keys and etc. This
simplified approach has helped Hibernate achieve mass adoption, making it a
de facto standard as an ORM solution [10].

Rather than building its own ORM solution from scratch, Grails wraps Hiber-
nate in a Groovy API it calls Grails Object Relation Mapping (GORM). Instead
of the mappings being defined in an external form, such as XML in Hibernate,
which can be complex to manage, GORM takes the complexity out by providing
a simple Domain Specific Language (DSL) on top of Hibernate that uses the
convention in the classes themselves to perform the mapping [10].

To create a domain class, we can simply create a Groovy class and place it
within the grails-app/domain/ directory. We can also create a domain class by
running:

» grails create-domain-class member

A domain class Member.groovy was created under grails-app/domain/ as well
as an integration test MemberTests.groovy under test/integration/.

The Member class is originally just an empty class declaration (class Member { }).
Let’s add a few properties to it:

69

Domain Class - Member.groovy
1 class Member {
2

3 String username, password, email, gender
4 int age
5 Date joined = new Date()
6

7 Set contacts
8 static hasMany = [contacts:Member]
9

10 static constraints = {
11 username(size:5..15, matches:"[a-z]+",
12 blank:false, unique:true)
13 password(size:5..15, blank:false)
14 email(maxSize:255, email:true, blank:false)
15 gender(inList:[’Male’, ’Female’], blank:false)
16 age(range:18..120)
17 }
18 }

What we’ve done above is to define an SQL schema by adding a couple of
properties that are very similar to what we are used to in Java. For example,
String will by default be mapped to varchar(255), int to integer, Date to
timestamp which in this case will be set to current date on creation, because
we have given it a default value.

On line 8 we declare a many-to-many relationship contacts in static hasMany
of type Member. That is, a member can have many members in contacts. The
relationship is also declared to be of type Set, so that a user can’t have the
same member in contacts more than once.

In our SQL schema we get two tables (relations), one main table, containing all
the declared properties, and one for the relationship contacts with two fields
(member_id, member_contacts_id).

Hibernate also adds two additional columns, id(bigint) and version(bigint)
to the main table. The id is used as an identifier which by default is managed
and incremented automatically. version is incremenented once for every update
on the row and used to ensure transactional integrity and support optimistic
locking for concurrent updates.

The constraints on lines 10-17 defines what is allowed to store in each property
defined. For example, username must have a length between 5 to 15 characters,
contain only characters a-z, can’t be blank (separate from size), and must be
unique in the table. Should a constraint be broken, the row can’t be saved and
the error can be rendered to the user. Notice the email validator. Grails have
several predefined validators (See Section 12.7). We can also create our own
custom validators in the domains as we shall also see later on. Constraints can
affect how types are stored in the database, for example username is now of
type character varying(15) rather than varchar(255) as is the default for
unaltered String properties.

70

11.2 Controller & View

Controllers are the orchestrators of the Grails application. They typically take
input from the user’s web browser and are responsible for handling and coordi-
nating incoming requests. They usually do some work with the requests such as
directly interact with the domain model, redirect to a different action or con-
troller, or prepare and send the response to a view which renders the appropiate
information to the user. Basically, a controller handles requests and prepares
the response. "A controller is prototyped and request scoped, meaning that a
new instance is created per request" (Graeme Rocher & al) [11].

To create a controller, we can simply create a Groovy class with a name that
ends with Controller and place it within the grails-app/controllers/ directory.
The class name must end with Controller by convention. A controller can also
be created by running:

» grails create-controller Demo

A controller class DemoController.groovy was created for us under
grails-app/controllers/ as well as an integration test
DemoControllerTests.groovy under test/integration/.

An empty directory demo was also created under grails-app/views/.

The DemoController class is originally just an empty class declaration with an
empty closure action (class DemoController { def index = { } }). Let’s
add three actions to it:

Controller - DemoController.groovy
1 class DemoController {
2

3 def index = { }
4

5 def acOne = {
6 render(’Hello, world!’)
7 }
8

9 def acTwo = {
10 render("Hello ${params.id ?: ’noName’}!")
11 }
12

13 def acThree = {
14 render("""My name is ${params.firstName}
15 ${params.lastName} but the id ${params.id}
16 is my nickname.""")
17 }
18 }

We added the three actions, acOne, acTwo and acThree to the
DemoController class.

71

Grails identifies by default from the URL (specified in URLMappings.groovy)
what action should be run by the following pattern:
http://.../controller/action/id

If we run our application and point the browser to:

http://localhost:8080/demo/acOne
We should see the message Hello, world!

http://localhost:8080/demo/acTwo
We should see Hello, noName!

http://localhost:8080/demo/acTwo/Moe
We should see Hello, Moe!

.../demo/acThree/Moe?firstName=Mohamed&lastName=Seifeddine
We should see My name is Mohamed Seifeddine but the id Moe is my nickname.

In the last example we passed id, firstName and lastName as parameters in
the URL which can all be read on the server side from the params object as
can be seen in the action acThree above. The params object will also hold the
input values from form submissions.

Grails provides the render() method to send content back to the user, but
controllers are normally not supposed to render any response directly to the
user (except for small Ajax responses). Glen Smith & al argue that "embedding
HTML inside the code is always a bad idea. Not only is it difficult to read and
maintain, but a graphic designer will need access to the source code in order to
design the pages" [17].

They continue "The solution is to move the display logic into a separate file,
which is known as the view, and Grails makes this simple". A view is responsible
for rendering the interface, normally HTML in a web application. Views and
controllers are strongly related though, since the input from the user and output
from the application strongly relate. But controllers are supposed to prepare
and choose how and what view should be rendered. Usually by interacting with
params, session, domain model and then pass some information on that’s used
in the view.

Views in Grails are typically Groovy Server Pages (GSP) which is an extension
of JSP but Grails supports both types. GSP however, are more flexible and
convenient to work with than JSP. GSP files end with the extension .gsp and
are located in the grails-app/views/ directory or any subdirectory under that
location.

Let’s create a new file index.gsp in the directory grails-app/views/demo/ with
the following content:

View - /demo/index.gsp
1 <html>
2 <body>
3 <h1>Rendering from the index view!</h1>

72

4 </body>
5 </html>

If we now point the browser to: http://localhost:8080/demo
We should see the message Rendering from the index view! as a headline.

The reason to this is that when we point the browser no further than the con-
troller name and without any action, the index action in that controller will by
default get hit.

To use a different default action, we can add def defaultAction = ’acOne’
to the controller and the acOne action will get hit instead.

Also, because the index action had an empty skeleton and we haven’t explicitlty
rendered anything, Grails will automatically try to render the view named the
same as the action that was hit, and located in the controllers view folder. In
the last example the /demo/index.gsp view was rendered when we hit the index
action in the DemoController.

To render a different view we can do:

render(view:’differentView’)

Or

render(view:’/differentDir/differentView’)

for a view in a different view directory.

Each GSP view also has access to a model which is basically a map with keys
and values that can be passed from the controller and used in the view. Here
we are passing two objects from the index action in DemoController to the
/demo/index.gsp view using model:

2 def index = {
3 render(view:’index’, model :[objOne:’Yeeha’, objTwo:’!’])
4 }

Or, since we’re using the default view for this controller and action, just:

2 def index = {
3 [objOne:’Yeeha’, objTwo:’!’]
4 }

In /demo/index.gsp we can take advantage of the passed model like this:

3 <h1>
4 Rendering from the index view! ${objOne}${objThree}${objTwo}
5 </h1>

73

If we now point the browser to: http://localhost:8080/demo
We should see the message Rendering from the index view! Yeeha! as a headline.

Notice the unpassed object objThree in the view. As mentioned earlier in the
Groovy chapter, Grails will output null in views as empty string. This proves to
be very useful when reusing views which differ slightly in content from different
actions. Either there is a value/text to render or there isn’t. So there is no need
for if blocks to determine to output or not.

Views can include Groovy code and they also have access to the domain models
although such usage should be limited and separated. Graeme Rocher means
that "mixing scriptlets and markup code is most definitely recognized as a bad
thing" and Grails provides an easy way for us to create custom tags just like
JSP does to better separate logic but without having to sacrifice any agility [11].
Views can also be separated into view templates as we’ll see in Section 14.3 on
p.104.

74

12 More on Domain

In this section we’ll try to demonstrate some basic operations for creating, read-
ing, updating and deleting data using GORM, primarly on the domain class
Member.groovy we created earlier. These operations can pretty much be called
from anywhere in the Grails application and for testing, the Grails console will
often work just fine12.

We’ll also try to introduce some other key topics deemed as good to know.

12.1 Create

Let’s start by populating the database with three members:

def james = new Member(username:’james’, password:’password1’,
email:’james@lth.se’, gender:’Male’,
age:’21’)

james.save()

Member peter = new Member(username:’peter’, password:’password2’,
email:’peter@lth.se’, gender:’Male’,
age:’25’).save()

def sarah = new Member(username:’sarah’, password:’password3’,
email:’sarah@lth.se’, gender:’Female’,
age:’18’).save(flush:true)

One thing with Hibernate is that when you call save, it doesn’t neccessarily
perform the SQL operations at that point but batches up SQL statements and
executes them at the end, which is typically handled by Grails. This is not
always something we want.

On occasion, we might want to control this ourselves. To do so we can provide
the flush argument to the save method save(flush:true) which will flush not
only the instance it’s being used on but all pending SQL statements.

Grails also provides something useful called binding:

Map mp = [username:’erica’, password:’password4’,
email:’erica@lth.se’, gender:’Female’, age:’17’]

def erica = new Member(mp).save(flush:true)

Binding can be of good use when users are provided an HTML form with input
fields named the same as those defined in the domain. We can for example have
the following input in a form:

12Although there are some known issues with the console, such as handling constraints
properly

75

<input type=’text’ name=’username’/>

The parameter Map params can then be used to bind instead i.e
new Member(params) rather than having to set each property manually.

When binding from a request parameter we need to be careful not to allow users
to bind malicious data that end up being persisted to the database. This could
be a property declared in the domain that we normally keep track of ourselfs,
perhaps a visit counter.

The bindData() method allows the same data binding capability but also al-
lows us to exclude certain properties from being set. To exclude the property
username we can do:

def demo = new Member()
bindData(demo, params, [’username’]) // Exclude username
demo.save(flush:true) // Won’t be saved

Perhaps you noticed earlier, that the member erica was violating the age con-
straint and therefore the instance wasn’t successfully persisted to the database.
The variable erica was therefore null which was returned from the
save(flush:true) call.

If we wish to find out if an instance fullfills our constraints without saving,
we call the method validate() which will return true or false and then
use hasFieldError(’age’) or errors.allErrors.each{...} on that instance.
There are taglibs to do this in a convient way in views as well, described in
Section 12.7.

Now we have three members persisted in the database. To add peter and sarah
to james contacts we can do:

james.addToContacts(peter)
james.contacts += sarah
james.save(flush:true)

james, peter and sarah are the variables declared in the beginning of this
section.

12.2 Read

There are many ways we can read/fetch data from the database. We can use
GORM Dynamic Finders, Criteria, Hibernate object oriented query language
HQL(not covered here) or use SQL. Let’s start with the basics:

get & getAll

Member.get(1) // Retrieval by id
Member.getAll([1,2,8]) // Can take a list of id’s
Member.getAll() // Fetches all members in database

76

list

Member.list() // Fetches all members in database
Member.list(max:10)
Member.list(offset:10, max:10)
Member.list(offset:10, max:10, sort:’username’, order:’desc’)

findBy & findAllBy

A dynamic finder that looks like a static method but acutally doesn’t exist
in the code level. A method is automagically generated at runtime based on
properties of the domain class.

findBy() attempts to find a maximum of one instance:

Member.findByUsername(’james’)
Member.findByUsernameLike(’%ame%’)
Member.findByUsernameIlike(’%aMe%’) // Case Insensitive Like
Member.findByAgeGreaterThan(20)
Member.findByJoinedLessThan(new Date())

findAllBy() is similar to findBy(), but will return all matching instances
instead of only one:

Member.findAllByUsername(’james’)
Member.findAllByUsernameNotEqual(’james’)
Member.findAllByUsernameIsNotNull()
Member.findAllByAgeBetween(5, 30)
Member.findAllByJoinedLessThanEquals(new Date())
Member.findAllByJoinedLessThanAndGender(new Date(), ’Male’)

count() & countBy()

Member.count() == 3 // True
Member.countByGender(’Male’) == 2 // True

findWhere() & findAllWhere()

Member.findAllWhere(username:’james’, gender:’Male’, age:21)

The findBy(), findAllBy() and countBy() methods can compare on maxi-
mum two properties and use the comparators seen in Table 3.

77

Comparator Description Argument
LessThan Less than the given value One
LessThanEquals Less than or equal a give value One
GreaterThan Greater than a given value One
GreaterThanEquals Greater than or equal a given value One
Like Equivalent to a SQL like expression One
Ilike Similar to a Like, except case insensitive One
NotEqual Negates equality One
Between Between two values Two
IsNotNull Not a null value None
IsNull Is a null value None

Table 3: Comparators for findBy(), findAllBy() and countBy() [21]

12.2.1 Criteria

We can also use Hibernates Criteria which is an excellent way to build and
run advanced queries. Criteria queries in pure Hibernate is a bit of a pain [4].
However, GORM have with the help of the Groovy language enabled a smoother
way to use Hibernates Criteria API.

Criteria can be used either via withCriteria() or createCriteria(). The
advantage of criteria queries is that they provide an almost complete way to
query domains, even their relationships such as contacts in Member. Let’s
try to go through a fairly complex example using withCriteria() and try to
explain some parts of it:

1 Member.withCriteria {
2

3 def demoVariable = ’We can use Groovy code in here!’
4

5 if(demoVariable.size() > 5) {
6 isNotNull(’email’)
7 }
8 else {
9 sizeEq(’contacts’, 100)

10 }
11

12 or{
13

14 and{
15 eq(’gender’, ’Male’)
16 gt(’age’, 20) // Greater than
17 }
18 and{
19 eq(’gender’, ’Female’)
20 le(’age’, 18) // Less than or equals
21 }
22 }
23

78

24 isNotEmpty(’contacts’)
25

26 contacts {
27 or{
28 eq(’username’, ’sarah’)
29 eq(’username’, "doesn’t_exist")
30 }
31 }
32

33 maxResults(10)
34 order(’joined’, ’asc’)
35 }.each{ println it.username }

Output:
james

The real action happens between line 12-22 where we are fetching all members
that are (male AND above 20) OR (female AND 18 or below). This will match
all our three domain instances in the database.

At line 24 we are saying that the relationship contacts cannot be empty, where
james is the only match.

At line 26-31 we are saying that the relationship contacts (defined of type
Member) must contain a member with username either sarah or doesn’t_exist.
Since sarah is among james contacts, james is still on.

For more information on how to use Criteria in Grails, please refer to [21].

12.2.2 SQL

Using SQL in Grails is easy and no different from standard Groovy SQL. The
domains won’t be involved and the communication is done directly with the
database.

Since we have already defined what database to use in DataSource.groovy we can
use that to connect with. Grails supports dependency injection by convention.
In other words, we can use the property name representation of a service, to
automatically inject them it into controllers, tag libraries, and so on13. But
not everywhere. To use SQL in Grails we also have to import the Groovy SQL
library:

import groovy.sql.Sql // Must be imported
class DemoController {

def dataSource // Inject dataSource
def demoAction = {

Sql sql = new Sql(dataSource) // Use of dataSource
def res = sql.rows("""SELECT * FROM member

13Read http://en.wikipedia.org/wiki/Dependency_injection

79

http://en.wikipedia.org/wiki/Dependency_injection

WHERE username = ?
AND
gender = ? """, [’james’, ’Male’])

...

12.3 Update

Updating an instance

Updating an instance using GORM is straightforward.

If we have the instance already, we can make a change to it and then save. For
example:

def memb = Member.findByUsername(’sarah’)
memb.username = ’maria’
memb.save(flush:true)

Member.findByUsername(’james’).contacts.each{println it.username}

Output:
peter
maria

As you can see the update will be reflected in james contacts. On update the
id of the updated element stays the same, but the version will be incremented
once.

Updating the database schema

Updating the database schema is not always as straightforward.

If we wish to add or remove a separate domain, then that’s not a problem. To
remove a property in a domain isn’t a problem either, as long as it’s no longer
used in the code. The column will still be there in the table and it’s up to us to
drop the column, although this is not neccessary. The reason for not dropping
automatically is likely to prevent accidental loss of data triggered by a small
change done in the domain.

The problem lies in that we cannot always introduce a new property in an
already populated domain without doing some extra work. Most databases will
fill the new column with NULL values in the already existing tuples, and when
a tuple is read with GORM this can become an issue. For most types this is
not a problem either, because we can add the constraint nullable:true until
those values have been updated but on types such as numbers which cannot be
null, this won’t work. We need to change these column values manually, for
example by using SQL. This can for example be done in BootStrap.groovy, a
Groovy Script, with the help of the Autobase or LiquiBase Grails plugins or in
some other way outside the Grails application.

80

Let’s add a new optional property city to the Member class. We can do this as
a String but if we wish to add coordinates to each city, or add cities to other
domains, a domain of its own is then justified. So we create a new domain class:

» grails create-domain-class city

Let’s add a few properties to it:

Domain Class - City.groovy
1 class City {
2

3 String cityName
4 double latitude, longitud
5

6 static constraints = {
7 cityName(blank:false)
8 }
9 }

We can now add City city to the Member class and add to its constraints
city(nullable:true) to make it optional(nullable).

Let’s populate the database with two cities and update james to be from the
city of Lund.

def lund = new City(cityName:’Lund’,
latitude:55.707352,
longitud:13.197124).save()

new City(cityName:’Göteborg’,
latitude:57.708733,
longitud:11.975098).save()

def james = Member.findByUsername(’james’)
james.city = lund
james.save(flush:true)

81

12.4 Set, List and Map

12.4.1 Set

When we define a hasMany relationship with GORM it’s a Set by default and
doesn’t have to be explicitly specified, although this can be done for clarity. A
Set is an unordered collection that doesn’t contain duplicates. We’ve already
defined our many-to-many relationship contacts in Member.groovy to be of
such type.

The problem with Set is that there is no ordering when accessing the collection.
The order is random, and if we try to output james contacts several times,
we’ll see that the order does change. However14, as of Grails 1.0.4, sorting on a
property is possible by a simple add to static mapping which is described in
Section 12.8 on p.89.

12.4.2 List

If we wish to keep objects in the order they where added and be able to reference
them by index like an array we can define the type as a List instead:

class Member {

List lstContacts
static hasMany = [lstContacts:Member]

...
}

We can then do:

def james = Member.findByUsername(’james’)
james.addToLstContacts (james)
james.lstContacts += james
james.lstContacts[2] = james
james.save(flush:true)

print james.lstContacts[0].username + " " +
james.lstContacts.size()

Output:
james 3

We added james to his own lstContacts three times for the sake of keeping
the example short and simple. Of course, any other member could have been
added instead.

14SortedSet in 1.0.3 is also a possibility but is somewhat buggy

82

12.4.3 Map

A map can be defined the same way as a standard map but it’s keys must always
be of type String.

If we wish to define a simple map with string/value pairs, there is no need to
add it to the hasMany property unlike with Set and List. But then both the
key and value must be of type String.

If we want a Map of key:object, then hasMany is required because we have to
define the one and only object type.

To continue on our example with contacts, a Map can prove useful for example
if we where to let members name their contacts themselves.

class Member {

Map simpleMap = [:] // key:value must both be of type String
Map mpContacts
static hasMany = [mpContacts:Member]

...
}

We could then add to simpleMap and mpContacts like this:

def james = Member.findByUsername(’james’)

james.simpleMap += [bgColor:’blue’, showAge:’false’]

james.mpContacts += [’My Best Friend’:
Member.findByUsername(’peter’)]

james.save(flush:true)

In simpleMap here we stored what appears to be some settings for the Member
james. We also added peter to james mpContacts under the alias key
’My Best Friend’.

83

12.5 Relations

Before we continue, we need to introduce a new simple domain class Blogpost
with the following content:

Domain Class - Blogpost.groovy
1 class Blogpost {
2 String content
3 Date added = new Date()
4 Date updated
5

6 static belongsTo = [member:Member]
7 // static belongsTo = [Member] /* Alt */
8 // Member member /* Alt */
9

10 static mapping = {
11 content type:’text’ // So content can be >> 255 chars
12 }
13 static constraints = {
14 content(blank:false)
15 }
16 def beforeUpdate = {
17 updated = new Date()
18 }
19 }

We also add a one-to-many relationship as a List to hasMany in Member.groovy,
so that the class now looks like:

Domain Class - Member.groovy
1 class Member {
2 String username, password, email, gender
3 int age
4 Date joined = new Date()
5 City city
6 List blog
7 static hasMany = [contacts:Member, blog:Blogpost]
8

9 static constraints = {
10 city(nullable:true)
11 username(size:5..15, matches:"[a-z]+",
12 blank:false, unique:true)
13 password(size:5..15, blank:false)
14 email(maxSize:255, email:true, blank:false)
15 gender(inList:[’Male’, ’Female’], blank:false)
16 age(range:18..120)
17 }
18 }

84

12.5.1 Owner

GORM allows us to define who the owner is of a relationship so that saves,
updates and deletes will cascade from the owning class to its possessions (the
other side of the relationship).

On line 6 in Blogpost we are saying that an instance of Blogpost belongsTo
an instance of the Member class. If we for example, where to let maria write and
append a blogpost to her List blog, she would be the owner of the Blogpost:

def maria = Member.findByUsername(’maria’)
maria.addToBlog (new Blogpost(content:’My first blogpost!’))
maria.save(flush:true)

Note that we didn’t have to explicitly save the new blogpost. The save on maria
will be cascaded and the new blogpost will be saved as well. This is however
not explicit to belongsTo but default behavior in GORM.

On line 7 in Blogpost we are showing a different way that belongsTo can be
declared. The first declaration on line 6 allows us to reach the owning instance.

For example, if we where to present blogposts on a common page, we could with
the declaration on line 6, reach and present their owners easily:

/* Newest blogposts */
Blogpost.list(max:10, offset:0, sort:’added’, order:’desc’).each {

println """\
Written by: $it.member.username
$it.content
Added: $it.added"""

}

Output:
Written by: maria
My first blogpost!
Added: 2009-08-20 14:20:53.031

All blogposts where listed. Notice that we used it.member.username to refer to
the owning member of the Blogpost. The declaration on line 8 will for example
not allow for such back reference.

If we where to delete maria’s account with the declaration on line 7 or 8, the
deletion will be cascaded and all her blogposts will be deleted as well.

If we do not wish to cascade deletes but still like a back reference, we can
simply declare it as seen on line 9 where GORM will automatically map an
added Blogpost to blog in Member to this property.

85

12.5.2 One-to-one

A one-to-one relationship is defined using a property of the type of another
domain class. The example City city in the Member class is of such type.

12.5.3 One-to-Many

A one-to-many relationship is when one class, has many instances of another
class. For example, a Member can have many Blogpost’s.

If there are two or more properties of the same type on the many side we can
use static mappedBy to specify how the collection is mapped:

class Airport {

String name

static hasMany = [outFlights : Flight,
inFlights : Flight]

static mappedBy = [outFlights : ’departureAirport’,
inFlights : ’destinationAirport’]

...
}

class Flight {

Airport departureAirport
Airport destinationAirport

...
}

This can be used like this:

Flight flight = new Flight(...)
Airport landve = Airport.findByName(’Landvetter’)
Airport beirut = Airport.findByName(’Beirut’)

landve.addToOutFlights(flight)
beirut.addToInFlights(flight)
beirut.save(flush:true)

println "Going from: $flight.departureAirport.name"
println "Going to: $flight.destinationAirport.name"

Output:
Going from: Landvetter
Going to: Beirut

86

In the example above, we started off by creating a new flight. We then added
the flight to the outFlights of Airport Landvetter and to inFlights of the
Airport Beirut. Notice then how we in the end can reach where we’re going,
from and to, by using only the flight instance.

12.5.4 Many-to-Many

Grails supports many-to-many relationships by defining a hasMany on both sides
of the relationship. A movie can have many actors, and an actor can be in many
movies for example. In our case, we have a many-to-many relationship between
members.

12.6 Delete

To delete an instance we can use the delete() method. It can be used without
or with the flush argument:

def maria = Member.findByUsername(’maria’)
maria.delete(flush:true)

Blogpost.count() == 0 // True

When we deleted maria the deletetion was cascaded and we also deleted her
blogpost because of belongsTo = [member:Member] in Blogpost.

87

12.7 Constraints

Constraints have been covered pretty much already. In table 4 we see a list of
already written and ready to be used constraints.

Name Example Comment
blank login(blank:false)
creditCard cardNumber(creditCard:true)
email email(email:true)
inList login(inList:[’Bob’, ’Eve’])
length login(length:5..15) For String or Array
minLength login(minLength:5)
maxLength login(maxLength:15)
min age(min:new Date()) Minimum value
max age(max:new Date())
notEqual login(notEqual:’Bob’) Not equal value
nullable age(nullable:false)
matches login(matches:/[a-zA-Z]/) Matching using regex
range age(range:18..25) Valid values
size staff(size:5..15) Restricting size of collection
minSize staff(minSize:5)
scale salary(scale:2) Scale for float numbers
unique login(unique:true)
url homePage(url:true) If String is an URL address

Table 4: Domain constraints

Each constraint have one or several error codes, defined by the following pat-
tern:

[DomainName].[PropertyName].[ConstraintCode]

The value of these codes needs to be defined in one of the message language files
in the internationalization directory grails-app/i18n/, for example as:

member.username.blank=Username cannot be empty.
member.gender.not.inList=Please specify your sex.
member.age.range.toosmall=Minimum age is 18.
member.age.range.toobig=Are you sure you’r alive?

myValid.passw.cant.be.username=Password can’t be your username. \
Please choose a different password.

The last error error code is one defined by us in the following custom validator
added to Member.groovy :

88

static constraints = {

password(length:5..15, blank:false, validator: { input, memb ->

if(input == memb.username)
return ’myValid.passw.cant.be.username’

})
...

The first argument passed to the closure is the value of the property being
validated, in this case password. The second argument gives access to the do-
main instance being validated. The second argument is often useful if validation
requires the inspection of the instances other properties as seen here.

On error, we return a custom error code that can be rendered to the user,
preferably from within a view using these tags15:

<g:eachError bean="${memb}">
<div>

<g:message error="${it}"/>
</div>

</g:eachError>

Or if we do not wish to render all errors in one place, but perhaps on a specific
place for certain properties, here as an example for password:

<g:eachError bean="${memb}" field="password">
<div>

<g:message error="${it}"/>
</div>

</g:eachError>

In these two last examples we’re assuming a domain instance Member memb has
been passed to the view.

12.8 Mapping

What haven’t been mentioned before is that properties written in CamelCase
such as cityName in City, are named differently in the database. The column
names are transformed into snake_case, that is, lowercased and separated by an
underscore. So in the city table we have a column named city_name instead
and have to use this when communicating with the database using SQL.

As we’ve already seen, Grails does a good job of mapping the domain model to
a relational database without requiring any kind of external mapping file.

But if we need to tailor the way GORM maps onto legacy schemas, performs
caching or we’re not happy with the conventions defined by GORM for tables,
column names etc, we can define custom mappings using the static mapping

15There is also a hasError tag that’s could prove useful. We’ll discuss tags in greater detail
in Section 14.2 on p.99

89

block defined within the domain class, as seen on line 10-12 in Blogpost.groovy
in Section 12.5 on p.84.

What we done there is to map content from varchar(255) to SQL TEXT or
CLOB type depending on the database being used.

There are many things that can be set and altered in the static mapping block
and below are a few useful examples:

static mapping = {
/* Rename the table in the database */
table ’renamed_city_table’

/* Rename the column city_name */
cityName column:’renamed_city_name’

/* Custom database identity */
id generator:’assigned’ // Other: hilo, uuid ...

/* Indices */
latitude index:’lat_idx’
longitud index:’lat_idx, long_idx’

/* Disable versioning */
version false

}

12.9 Other

12.9.1 Events

GORM supports registration of events as closures that get fired when cer-
tain events occurs. To add an event, simply add one of the relevant closures
beforeInsert, beforeDelete, beforeUpdate or onLoad to the domain class
[21]. In later Grails versions there is also the afterInsert, afterUpdate,
afterDelete and beforeLoad events. None of the closures take any parameters
or return any values, so properties need to be either in the domain instance
self or retrievable by the current thread.

On line 16-18 in Blogpost.groovy in Section 12.5 on p.84 we’ve added the
beforeUpdate closure where the variable updated of type Date will be set to
the current date on the instance being updated.

12.9.2 Methods

We can also add methods to the domain model in the same way as in standard
Groovy classes. If declared as static they can be reached with and without an
instance, and if not they can be reached with an instance only.

90

13 More on Controller

In Section 11.2 on p.71 we briefly discussed what controllers are and demon-
strated some basic things. In this section we’ll try to introduce what else is out
there that might be good to know when working with controllers.

13.1 Scope

Grails supports different scopes to store information in with all lasting a different
length of time. "Grails lets us reference them explictly so that we can choose
to store data for as long as we need" (Glen Smith & al) [17].

13.1.1 Request

The request scope holds objects for the duration of the currently executing re-
quest and will hold that data only until the view has finished rendering, making
the request scope stateless.

The request object is an instance of Javas Servlet API’s HttpServletRequest.
The HttpServletRequest class is useful for things such as obtaining request
headers and establishing information about the user when a request comes in
to the server. It manages parameters and data from form submission. The
paramaters property in request is for example used to generate the params
instance seen earlier in Section 11.216.

The request scope is great when we want to store data that’s only useful during
the current request, for example to share data between a controller and view,
or view and wiew-templates. Glen Smith & al explains that "when data was
passed as a Map in the model from controller to view earlier, we where implicitly
making use of the request scope" [17].

Grails enhances the HttpServletRequest by adding several properties and
methods that makes its API easier to use. For example, properties in request
are normally accessible via request.getAttribute(’propertyName’). In Grails
we can access and set the same properties using the subscript operator or via
the dot.key syntax as well.

Below are just a few standalone examples that gives an idea of how request
can be used:

if(request.method == ’POST’ || request.method == ’GET’) {...}
/* OR */
if(request.post || request.get) {...}

/* Assign variables to be kept only during this user request */
request.myVariable = new String(’My Object’)

16The params instance will in addition also contain information on what controller and
action was requested

91

request.myVariable == ’My Object’ // True

request.remoteAddr // Ip of the incoming request

13.1.2 Session

The session scope allows us to associate data on the server with individual
users. Objects placed into session are kept until the user session is invali-
dated, either manually for example on logout or through expiration, usually by
inactivity. The default expiration time is 30 minutes but will be prolonged as
long as the user does new requests to the server.

The session object is an instance of Javas Servlet API’s HttpSession class,
and is really easy to use. Below is a simple login and logout action that makes
use of session:

1 def login = {
2 if(request.post && params.username){
3

4 def memb = Member.findByUsername(params.username)
5 /* Success */
6 if(memb && memp.password == params.password){
7 session.loggedIn = memb
8 return redirect(action:’settings’) // Redirect
9 }

10 }
11

12 render(view:’login’) // Not nessecary
13 }
14

15 def logout = {
16 session.removeAttribute (’loggedIn’)
17 redirect(uri:’/’) // Redirect to startpage
18 }

We can see the use of session on line 7 and 16.

On line 12 we explicitly say that the view ’login’ should be rendered if the above
conditions fail. Had we not, the same view would still have been rendered.

A note on the if statement on line 6. If we instead would’ve used the Safe
Navigation Operator like this:

if(memb?.password == params.password)

It’s possible that we would have entered the block if a Member is not found
memb == null and a password field is not submitted because of form manipu-
lation making params.password == null.

92

13.1.3 Flash

Flash scope is a concept introduced by Rails [28]. The flash object is a Map and
can therefore be used to store key:value pairs which are transparently stored in
session. Objects placed into flash are kept for the duration of the current
request and the next request only. They are automatically cleared out when the
next request completes.

The flash could be used together with redirect instead of a chain (described
next) although a common use case is to store a message when some sort of
validation fails:

def profile = {
def memb = Member.findByUsername(params.username)
if(!memb) {

flash.message = "Member $params.username not found"
return redirect(controller:’search’)

}

[memb:memb] // Render ’profile’ view & pass memb to it
}

When a Member is not found, we are redirected to /search/defaultAction
where we can take advantage and show flash.message. Either in the controller
or more likely in a view for the search results.

13.2 Redirect & Chain

13.2.1 Redirect

Often, an action needs to be redirected to another controller/action. Actions
can be redirected using the redirect() method available in all controllers.

The method takes a Map as an argument and can be used in a couple of ways.
Internally the redirect() method uses the sendRedirect() method in Javas
Servlet API’s HttpServletResponse.

We can redirect to another action within the same controller, action in a different
controller, a URI for a resource in the Web application or to an absolute URL.

redirect(action:’login’)
redirect(controller:’search’)
redirect(controller:’search’, action:’results’)

redirect(uri:’/file/in/web-app’)
redirect(url:’http://www.cs.lth.se’)

On completion of a redirect, the data in the previous request like parameters
or submitted form data isn’t preserved but is instead lost. Parameters can be
optionally passed from one action to the next using the id and/or the params
argument:

93

redirect(action:’login’, id:’someId’)
redirect(action:’login’, params:[a:1, b:2])
redirect(action:’login’, id:’anId’, params:[a:1, b:2, c:3])

A redirect will happen also in the users browser and the new action can be seen
in the adress field of the browser, as well as the parameters passed to the new
action. The latter can be undesired, for instance when we’re redirecting a POST
request consisting of a form submission.

13.2.2 Chain

Although we can pass parameters in a redirect(), it has limited usage and
is not complete because parameters can only have text based values. They are
also visible to the user in the browsers address field. Surely, we can stuff objects
in the flash scope before redirecting, but Grails provides a chain() method
specifically to pass objects between one action to another.

chain() and redirect() are very similar. Except for one thing. chain()
allows the model to be preserved from one action to the next. The model
can be accessed in the next controller/action through the chainModel. This
property will exist only in actions following a call to chain().

Below is an example with three actions that uses chain().

def one = {
chain(action:’two’, model:[a:new String(’1’)])

}
def two = {

chain(action:’three’, model:[b:new Integer(2)])
}
def three = {

if(chainModel?.a == ’1’ && chainModel?.b == 2)
render(’Success’ + " " + chainModel.a + " " + chainModel.b)

else
render(’Failure’)

}

If we’d call action one from the browser, we should see Success 1 2 and if we’d
call three directly, we should see Failure.

Like the redirect() method, we can also pass parameters using chain().

One thing worth mentioning here is that when we call redirect(), chain()
or render() (wether rendering a simple text output or a view), the execution
doesn’t necessary stop there.

If we’d for example remove the else statement in action three and call action
one again, we should see Success 1 2Failure. To stop the execution from going
futher down in this example, we can either call return render(...) in the if
block or on a separate line, like this:

94

def three = {
if(chainModel?.a == ’1’ && chainModel?.b == 2){

render(’Success’ + " " + chainModel.a + " " + chainModel.b)
return

}
render(’Failure’)

}

This version is equivalent to the previous one.

13.3 Interceptors

Grails provides a mechanism called action interceptors. There are currently two
types of interceptors that enables actions in a controller to be intercepted before
or after they are executed.

The beforeInterceptor allows us to run logic before an action is executed, and
afterInterceptor after an action is executed. An interceptor can be defined
for all actions in the body of a controller like this:

def beforeInterceptor = {
if(!session.loggedIn){

redirect(controller:’other’, action:’login’)
return false

}
}

An interceptor will by default apply to all actions in a controller. If the in-
terceptor returns false, the action will not be executed. In the above defined
beforeInterceptor we say that session.loggedIn needs to be set for access
to any action in the same controller17.

We can however specify what actions an interceptor applies to using a Map and
a reference to a method18 to call:

def beforeInterceptor = [action:this.&authMethod,
except:[’login’, ’help’]]

def authMethod(){
if(!session.loggedIn){ redirect(action:’login’); return false }

}

The beforeInterceptor will now be invoked before all actions except for ac-
tions login and help. We also pass a method reference pointer to authMethod()
to be called when the except condition is met.

If we change except to only, we ’ll have the opposite effect, with the method
being invoked only for actions login, and help.

17So we had to make redirect() in this example go to a different controller
18Instead of a closure which is an action and therefore accessible to the outside world

95

The afterInterceptor is defined in a similar way but will run after an action
has executed and before a view has been rendered.

It also differs in that it takes two arguments. The resulting model as the first and
modelAndView in the second argument, enabling us to manipulate our response
based on those two properties:

/* Applies to all actions. Can be conditioned like beforeInt... */
def afterInterceptor = { model, modelAndView ->

/* We can read and alter the resulting model */
if(model.a > 100) {

model.a = 0
redirect(action:’login’)
return false

}

println "View to be rendered: ${modelAndView.viewName}"

modelAndView.viewName = "/differentDir/differentView"

println "View to be rendered now: ${modelAndView.viewName}"
}

If an interceptor is likely to apply to more than one controller, we can extend
and place it in a base controller or better, write a Filter. A filter can be
applied to multiple controllers or URIs without the need to change the logic of
each controller. We’ll briefly discuss filters in Section 15.1 on p.108.

96

14 More on View

We demonstrated the view model earlier on page 72 where we showed how we
separate the HTML output into a GSP. But that was very basic. We have yet
to give a solid introduction to views and GSP in particular.

Grails supports the creation of views in a JSP or GSP. Although JSP is pow-
erful, GSP is nontheless the evolution of the JSP view technology and the rec-
ommended way to work with views in Grails. Things that are difficult to do in
JSP such as writing tag libraries are much simpler and accessible in GSP [17].
Graeme Rocher says, "GSP provides a mechanism for creating custom tags just
as JSP does but without sacrificing any agility" [10].

GSP is also different from JSP because it fully takes advantage of the Groovy
runtime environment capabilities, dynamic method dispatching, enabled sup-
port for the use of GString and offer an expressive syntax for maps and lists
that makes it perfect and valid as its own view technology [11].

In Grails, there is a number of objects made available to a view. These in-
clude request, session, flash, params and out to name a few. The model
passed from the controller, our domains and tag libraries are among many other
things accessible in a view. Like JSP, we can add page directives, scriplets and
comments in a GSP.

In this section we’ll try to introduce and demonstrate key topics and concepts
involving working with GSP.

14.1 Code in GSP

14.1.1 Page Directive

Graeme Rocher & a explains the page directive as "an instruction that appears
at the top of a GSP that performs an action that the page relies on. As an
example, it could set the content type, perform an import, or set a page property,
which could even be container-specific" [11].

The contentType directive is used to set the type of the content of our response
in a GSP allowing the GSP to output content other than HTML, such as XML
or plain text.

We place the directive at the top of the page in the same way it’s done in a JSP
starting with <%@:

<%@ page contentType=’text/xml; charset=UTF-8’ %>

The import directive allows us to import classes into the page and is similar to
the import statement in a Java or Groovy class. In the top of the page we can
for example add:

<%@ page import=’groovy.sql.Sql’ %>

97

14.1.2 Groovy Code

Scripting

We declare a scriptlet block in a GSP the same way as done in a JSP, using
<% ... %> syntax:

1 <html>
2 <body>
3 <%
4 def var = ’show’
5 if(var == ’show’)
6 out << ’Hello World!’
7 %>
8 </body>
9 </html>

Between lines 3-7 we’ve basically entered the world of Groovy and can type
almost19 any Groovy code we want. On line 6 we write to the response by using
the output stream writer out20.

We can write to the output stream writer in a number of ways:

1 <html><body>
2 Hello World!
3 <% print ’Hello World!’ %>
4 <% out << ’Hello World!’ %>
5 <%= ’Hello World!’ %>
6 ${’Hello World!’}
7 </body><html>

Of course, to output text we just write it as it is and seen on line 2. The
recommended way to output variabled content is by using a GString.

Commenting

There are a number of ways to use comment in a view. The most common and
likely way is by using one of the following three:

<html><body>
<%-- JSP style comment --%>
%{-- GSP style comment --}%
<!-- HTML style comment -->

</body></html>

JSP and GSP style for commenting is used for comments that should not be
sent in the rendered response whereas the HTML comment will be sent but

19We can’t for example add methods in a view but similar effect can be achieved by the use
of closures

20Note that in these examples, we’re not interested in writing valid HTML markup code

98

something the browser chooses not to display, but which can be seen in the
source code.

JSP and GSP style of commenting also complement each other. One of these
styles of commenting should therefore be used more frequently than the other,
like when commenting out single lines or commenting on code in a view. If
we then want to comment out a larger block of code that for example already
contains JSP style comments, we can use the GSP style to comment from start
to the end of that block, thus eliminating the need for us to remove the JSP
style comments for that code block.

14.2 Tags in GSP

We’ve mentioned the term tag a couple of times already and we used them in
Section 12.7 on p.89 for rendering erorrs.

Tags are like view methods and are normally favored over the use of scriptlets
because they provide a clean way to separate view and controller logic and allows
us to create well formed markup code.

Grails has a wide range of custom tags built in for performing basic operations
such as validating, looping, creating and so on. Grails also offers a way for us
to create our own custom tags as we shall also see on p.102.

14.2.1 Grails Tag Library

As just mentioned, there are many tags that ship with Grails. They are in fact
too many to all be listed here but below we try to cover a couple of them.

Each GSP tag requires the prefix g: so that it’s recognized as a GSP tag.

Logical Tags

In this example, we demonstrate how the logical tags if, else and elseif can
be used in a view:

<html><body>
<g:if test="${true == false}">

Not coming in here
</g:if>
<g:elseif test="${10 > 100 && params.var == ’show’}">

Not coming in here
</g:elseif>
<g:else>

Coming in here!
</g:else>

</body></html>

Notice the condiction parameter test being passed in the if and elseif tags.

99

Iterative Tags

The are five default iterative tags: each, while, collect, findAll and grep.
Most used ones are likely the each and while tag:

<%-- Declaring content for this example --%>
<% List lst = [’a’, ’b’, ’c’] %>
<html><body>

<g:each in="${lst}" >
${it}

</g:each>

<g:each in="${lst}" var="e" status="i" >
${i}: ${e}

</g:each>

<% int j = 0 %>
<g:while test="${j < lst.size()}">

${j}: ${lst[j++]}
</g:while>

</body></html>

The while tag requires a condition to be passed in the parameter test. We are
also responsible for both initializing and incrementing the variable j.

For the each tag, the parameters status and var are optional. However, if we
use the parameter status then we have to use var as well.

Good practice is however to always specify var because of potential issues when
doing nested calls to tags that also uses it. status is always optional and
should be used if we need access to an iteration index.

Assignment Tags

In the previous example we declared List lst and int j using Groovy code
even though this is recognized as a bad thing. Grails actually offer a way to set
or alter the value of a variable using the set tag in a GSP page.

We use the set tag by passing the name of the variable to be set in parameter
var and the value to assign to it in parameter value:

<g:set var="lst" value="[’a’,’b’,’c’]"/>
<g:set var="j" value="${0}"/>

<g:set var="str1" value="txt"/>
<g:set var="str2">

<p>Text here will be assigned to str2
including the left space and newlines.
<g:if test="${true}">

Add this to str2 as well.
</g:if>

100

</p>
</g:set>

In the last set tag we assigned to variable str2 a text block by making use of
the body of the tag and omitting passing the parameter value. Such assigning
can prove to be useful when we need to declare an HTML block that’s to be
used or passed on to several places. Also notice how we’ve output text to str2
conditionally.

Linking Tags

There are three linking tags: link, createLink and createLinkTo.

By using the link tag we can create an HTML a tag with href being set based
on some predefined parameters we pass to it such as action, controller, id,
params and a couple of others21. We can pass any HTML attributes we want
as well, such as class, style and etc:

<g:link controller="search" action="results" class="_a"
params="[o:10, max:50]" >10</g:link>

The createLink tag is very similar to link22 and takes the same parameters
but will create an URL only, without the a tag, href and other attributes. It
can be useful if we for example want to create links the HTML way, or add a
URL to a form, perhaps assign a URL to a JavaScript variable and etc:

<a class="_a" href="<g:createLink controller="search"
action="results" params="[o:10, max:50]"/>" >10

Here we’ve actually nested the tag inside the href attribute which is not very
attractive. Many tags in Grails are actually dynamic in that they can be called
as a method as well. The last example can and is usually written like this:

<a class="_a" href="${createLink(controller:’search’,
action:’results’, params:[o:10, max:50])}" >10

The call to createLink() here is done from within a GString and without the
use of g. as a prefix. Tags can be called as methods from a controller as well,
but then we have to use g. as a prefix, i.e.
g.createLink(controller:’search’, ...).

All the linking examples above will result in this same link:

10

21Which are all optional and will by default link to current controller and action
22In fact, link calls createLink in its own implementation

101

We use the createLinkTo tag to link to resources within the web-app directory.
Great for linking to JavaScript, CSS and image files and will generate the URL
part only like the createLink tag. The most important parameters to use is
dir and file:

<link href="${createLinkTo(dir:’css/mycss’, file:’main.css’)}"

type="text/css" rel="stylesheet" />

The image mercedes.jpg needs to be available in directory web-app/images/ and
the stylesheet main.css in directory web-app/css/mycss/.

There are a number of other tags such as the form tags (form, textField,
select and etc), paginate, render, cookie, message and so on.

There is also couple of useful Ajax tags that’ll be introduced later in Section
15.2 on page 109.

14.2.2 Creating Custom Tags

Being able to create custom tags in JSP is a wonderful and powerful feature.
Unfortunately, for all their wonderful attributes they are very complicated to
implement. The reason for this are understandable and because it attempts to
make possible creation of tags for every scenario we might want to use a tag
[11].

Grails allows the creation of simple, logical and iterative custom tags through
its simple dynamic tag library mechanism. "The benefit of Grails tags is that
they require no additional configuration, no updating of TLD descriptors and
can be autoreloaded at runtime without a server restart" [14].

To be able to create a tag we must first create a tag library. We do that by
simply creating a Groovy class with a name that ends with TagLib and place it
within the grails-app/taglib/ directory. The class name must end with TagLib
by convention. A tag library can also be created by running:

» grails create-tag-lib demo

A tag library class DemoTagLib.groovy was created for us under
grails-app/taglib/ as well as an integration test DemoTagLibTests.groovy under
test/itegration/.

The DemoTagLib class is originally just an empty class declaration
(class DemoTagLib { }). Let’s add two tags to it:

102

Tag Library - DemoTagLib.groovy
import java.text.DecimalFormat as DF // Type aliasing
class DemoTagLib {

def outputNumber = { args ->
/* Triple grouping + 2 decimals as default format */
def format = args.format ?: "#,###.00"
DF dF = new DF(format)

out << dF.format(args.number)
}

def repeat = {args, body ->
args.times?.toInteger().times{ nbr ->

/* Call the body of the repeat tag */
out << body((args.index):nbr)

}
}

}

By looking at the implementation of outputNumber, we can see that it handles
up to two parameters, number and format, the latter being optional and use
the default value if not passed from the calling tag.

The second tag repeat handles two parameters and a body. The body is called
and passed a key:value pair consisting of the incoming tag parameter index as
a key and nbr of the iterative method times() as a value.

We can call the two tags from a view like this:

<html><body>
<%-- Outputs: 1,234,567.90 --%>
<g:outputNumber number="${1234567.899}" />
<%-- Outputs: 1,23,45,68 --%>
<g:outputNumber number="${1234567.899}" format="#,##"/>

<g:repeat times="3" index="myIndex">
On iteration: ${myIndex}

</g:repeat>
</body></html>

outputNumber is a simple tag and doesn’t work with a body like the repeat
tag.

The body is the part between the opening and closing tag. Its type
GroovyPageTagBody extend Closure and can therefore be invoked and passed
objects to that are directly made available for use in the tag body. Note that
the body of a tag is not executed on declaration but only when invoked, just
like a Closure.

103

These tags are available under the g: tag library just like the tags that are
bundled with Grails. By default, all our own custom tags are put in the g
namespace.

To avoid naming conflicts with built in tags or for other reasons we can define
a namespace of our own by adding this to the class DemoTagLib:

static namespace = ’dt’

We can now call the tags as <dt:outputNumber ... /> and <dt:repeat ... />.

14.3 Template

A template is a GSP file located in the grails-app/views/ directory or any sub-
directory under that location and whose filename, by convention starts with an
underscore, i.e. _filename.gsp.

A template can contain the same type of content as a normal view GSP and
therefore allows us to split, separate and reuse pieces of our views inorder to
avoid redundancy and achieve cleaner code. Several pages in an application
might require the same piece of content, such as a footer:

Template - /common/_footer.gsp
<div>

$MyEnterprise c⃝ ${year}
Privacy
About
Help
Contact

</div>

We can now call the template from our views using the render tag and the
relative path from grails-app/views/ like this:

<html><body>
...
<g:render template="/common/footer" model="[year:2009]"/>

</body></html>

Notice how we by using the model parameter of the render tag can pass objects
to the template.

A template rendered from within a view by default has direct access to the
model passed from the controller. So in the above example, we can instead pass
year from a controller and omit passing it from the tag and still get the same
result23.

23Design wise, it would be better to store the year someplace else and not rely on it being
passed at all. But something had to be passed to make this this example complete

104

We can also render templates from a controller using the render() method
should we need to, perhaps in an Ajax response:

def someAction = {
render template:’/common/footer’, model:[year:2009]

}

14.4 Layout

Grails uses the SiteMesh decorator engine to help assemble the view for web
pages. Decorators, in Grails known as layouts, are of good use when we require
a consistent look across our many pages. A layout is a GSP file that’s located in
the grails-app/views/layouts/ directory or any subdirectory under that location.
You can think of layouts as views with placeholders we can pass certain content
in to.

Take the footer example in the previous section. As it is now, it requires us
to call the footer template from every view that want to use it. That’s indeed
redundant and if we decide to move the template to another direcoty or pass
another object to it, we’d have to alter every view that uses the footer.

Let’s start by creating a file named demoLayout.gsp in the just mentioned di-
rectory to illustrate their usefulness:

105

Template - /layouts/demoLayout.gsp
<html>

<head>
<title><g:layoutTitle default="My Webpage"/></title>
<g:layoutHead/>
<g:javascript library="prototype"/>

</head>
<body onLoad="${pageProperty(name:’body.onLoad’)}">

ABCD
<g:layoutBody/>
<g:render template="/common/footer" model="[year:2009]"/>

</body>
</html>

Grails provides five tags to work with layouts. In demoLayout.gsp, we’ve used
layoutTitle, layoutHead, pageProperty and layoutBody.

We make use of this layout by adding a meta tag to the header of our view24:

View - anyView.gsp
<html>

<head>
<meta name="layout" content="demoLayout"/>
<title>MyTitle</title>
<g:javascript src="main.js"/>

</head>
<body onLoad="doSomething()">

EFGH
</body>

</html>

When anyView has rendered, its content will be merged with demoLayout. The
resulting output rendered to the user will be equivalent to:

"Resulting Output"
<title>MyTitle</title>
<g:javascript src="main.js"/>
<g:javascript library="prototype"/>

</head>
<body onLoad="doSomething()">

ABCD
EFGH
<g:render template="/common/footer" model="[year:2009]"/>

</body>
</html>

By comparing the resulting output with demoLayout.gsp and anyView.gsp we
24There is another way as well

106

can notice several things.

The layoutTitle tag will insert the title from a view if there is one specified,
otherwise use the default value supplied to it.

The layoutHead tag will merge the headers of a view and the layout. Some
things are ignored, such as the layout meta and title tag from the view.

pageProperty gives access to attributes of certain tags from the view. In this
example the onLoad attribute from the body tag.

The content in the body of the view will be inserted where the layoutBody is
called in the layout.

There’s also an applyLayout tag that’s used to apply a layout to either a tem-
plate, a piece of code supplied in the body or to an arbitrary URL.

107

15 Other

15.1 Filters

In Section 13.3 on p.95 we showed how the before and after interceptors can be
used in a controller. They are however primarly useful when applied to a few
controllers and become difficult to manage in a large application.

Filters allows us in a similar way to define logic to run before and after an
action but offers in addition an easy way to apply that logic from a centralized
place onto several controllers and actions, as well as for specific URI s. There is
also an afterView interceptor to place logic in that will run after a view called
from an action has been rendered.

To create a filter, we simply create a Groovy class with a name that ends with
Filters and place it within the grails-app/conf/ directory. The name must end
with Filters by convention.

Let’s create a class named DemoFilters.groovy in the just mentioned directory.
Below we’ve defined the two filters all and loginRequired:

Filter - DemoFilters.groovy
1 class DemoFilters {
2 def filters = {
3

4 all(controller:’*’, action:’*’){
5 before = {
6 // Perhaps count made incoming requests?
7 }
8

9 /* We can read and alter from the action resulting model */
10 after = { model ->
11 // Perhaps add a default object to the model?
12 }
13

14 afterView = {
15 // Perhaps measure total time to process a request?
16 }
17 }
18

19 loginRequired(controller:’user’, action:’(settings|delete)’){
20 before = {
21 if(!session.loggedIn){
22 redirect(action:’login’)
23 return false // Abort execution of action
24 }
25 }
26 }
27 }
28 }

108

As seen in the class above, we can add several filters to the same filter class by
defining them separately inside the filters closure.

By using the wildcard character * on line 4 for both controller and action,
the filter all will be applied for all actions across all controllers.

If a wildcard is not present then we can use a regular expression as a matcher,
as seen on line 19 where the loginRequired filter will be applied only for the
two actions settings and delete in the UserController.

When actions settings and delete in the UserController are requested, both
before interceptors in all and loginRequired will execute. The order we
define the filters determines the order in which they are executed. Returning
false as done on line 23 ensures that the action and remaining filters are not
executed if there are any after.

For example, had the loginRequired filter been placed first, the before logic
defined in all will not be executed for all incoming requests because of the pos-
sible breaking of return false in loginRequired and would lead to incorrect
counting.

Note that filters do not have the same functionality as controllers. They have
access to objects actionName, controllerName, request, response, flash,
session, params and methods render() and redirect() to name a few. Access
to the g tag library is for example not available in a filter class.

15.2 Ajax

Ajax or Asynchronous JavaScript and XML is the collective name for inter-
related Web developing techniques used on the client side to create rich and
interactive Web applications. Grails offers a number of built in tags to make
working with Ajax easy and a pleasant experience.

We can make use of the Grails included JavaScript library Prototype to achieve
this, but Grails supports many other JavaScript libraries such as Yahoo UI, Dojo
Toolkit, jQuery, Google Webkit and etc as well. To use one of them instead,
we just need to install their corresponding Grails plugin25. For example, to use
YUI we do:

» grails install-plugin yui

In the header tag of our views we need to specify the library we’re using by
adding the following tag:

<g:javascript library="prototype"/>

To make use of the Grails included effects library Scriptaculous, we simply
replace prototype with scriptaculous because Scriptaculous by default make
use of Prototype. To use YUI instead, we replace prototype with yui26.

25See http://grails.org/Plugins for more information
26Provided that the YUI plugin is installed as well

109

The Ajax tags provided by Grails are remoteLink, remoteField, formRemote,
submitToRemote, and remoteFunction. They all have in common a set of op-
tional parameters and JavaScript events that will fire depending on the outcome
of the made Ajax request.

Parameter Takes

method HTTP method to use. Default is POST.

before JavaScript code to execute before the Ajax request is sent.

update Either a String with the element id to up-
date on success(failure ignored) or a Map with the
ids to update for success and failure states, i.e.
[success:’sId’, failure:’fId’].

onLoading JavaScript code to execute when the Ajax request connection
has opened. Perhaps to show a spinner?

onFailure JavaScript code to execute when the Ajax response fails.

onSuccess JavaScript code to execute when the Ajax response is re-
cieved and before possible updates.

onComplete JavaScript code to execute when the Ajax response is re-
cieved and after possible updates. Will always run, no mat-
ter if the request succeeds or fails. Perhaps hide the spinner?

Table 5: Some common parameters for Grails Ajax tags

The remoteLink tag in its simplest form is very straight forward to use:

1 <html>
2 <head>
3 <g:javascript library="prototype " />
4 </head>
5 <body>
6 <g:remoteLink controller="demo"
7 action="myAction"
8 update="myId " >Click here!</g:remoteLink>
9

10 <div id="myId "></div>
11 </body>
12 </html>

The remoteLink tag defined between line 6-8 will create an HTML link that
will make an Ajax request to http://.../demo/myAction when clicked. The
rendered response from myAction will then be inserted into the element that
has the id defined in the update parameter. In this case, it’ll be into the div
on line 10.

110

Let’s try a slightly more complex example by demonstrating the use of form-
Remote with a remoteField tag included in it by creating a simple login
form.

The password field and submit button should not be present at start but sent
from the server when we’ve found a matching Member in the database for the
username provided and removed otherwise.

Once the password submitted is correct, we login the member and send back a
reply that the login was successful:

View - /demo/login.gsp
1 <html><head><g:javascript library="prototype"/></head><body>
2

3 <%-- Ajax remote form --%>
4 <g:formRemote name="login_form" id="login_form"
5 url="[controller:’demo’, action:’login’]"
6 onSuccess="formSubmissionResponse(e)">
7

8 <%-- Ajax remote field for entering the username --%>
9 <g:remoteField name="username"

10 controller="demo"
11 action="checkUsername"
12 update="password_and_submit" />
13

14 <div id="password_and_submit"></div>
15 </g:formRemote>
16

17 <%-- JavaScript code below is called onSuccess from above --%>
18 <script type="text/javascript">
19 function formSubmissionResponse(e){
20 var json = e.responseJSON
21 if(json.loginSuccess == true){
22 Element.remove(’login_form’)
23 /* Member profile could’ve been recieved if sent &
24 then placed somewhere on the page from here */
25 }
26 alert(json.reply)
27 }
28 </script>
29 </body></html>

On line 9-12, the remoteField tag declared will create an HTML input tag
of type text that will send its value to the specified remote location when it
changes27. In this case to the checkUsername action in DemoController.

The response sent from the checkUsername action (see next page) will be placed
into the div on line 14 above.

Once the password field and submit button are present, and the response from
27In reality, it’s on the onKeyUp event (when a keyboard key is released)

111

the submitted form comes back successfully, the onSuccess event on line 6 will
trigger the formSubmissionResponse(e) where e is of type XMLHTTPResponse.

On line 20 in formSubmissionResponse() the responseJSON sent from the
login action in DemoController is read to decide whether to remove the form
altogether. On line 26 the reply message also sent, is displayed to the user.

The checkUsername and login action in DemoController:

Controller - DemoController
1 class DemoController {
2

3 def checkUsername = {
4 def memb = Member.findByUsername(params.value)
5 if(memb)
6 /* Textbased response.
7 Available at client as e.responseText */
8 render {
9 input(type:’password’, name:’password’)

10 input(type:’submit’, value:’Login!’)
11 }
12 render(’’) // Include an empty response
13 }
14

15 def login = {
16 if(request.post){ /* Form submission */
17 def memb = Member.findByUsername(params.username)
18

19 if(memb && memb.password == params.password){
20 session.loggedIn = memb
21 /* JSON (JavaScript Object Notation) response.
22 Available at client as e.responseJSON */
23 render(contentType:’application/json’){
24 loginSuccess(true)
25 reply("You are now logged in ${memb.username}!") }
26 }
27 else{
28 render(contentType:’application/json’){
29 loginSuccess(false)
30 reply("Wrong username or password!") }
31 }
32 }
33 /* Will render the login view for non-post requests */
34 }
35 }

How the above code works should be pretty straight forward to figure out by
now. Notice how we can render() HTML markup code as text on line 9-
11. Also notice the use of a JSON response to transmit structured data over a
network connection on line 23-25.

112

Left are the submitToRemote and remoteFunction tags which are used in a
similar matter as the ones described above. The remoteFunction tag is however
probably the most useful tag of all thse since it allows us to create a remote
function to be used as we please.

15.3 Deploying

When the application is ready to be deployed onto a production system, it’s
recommended to do so with a Web Application Archive (WAR) file, which is
basically a JAR file with a defined directory and file structure.

A WAR file can be deployed on any Java application server of our choice, such
as Tomcat, JBoss or Weblogic. A WAR is something that we normally have to
build ourselfs and can be a rather verbose task to perform.

Grails, being obsessed with making lives easier, doesn’t bail out on us on the
last step either. Grails allows us to create a fully working WAR file simply by
running the following command:

» grails war

Output:
...
Environment set to production
...
Done creating WAR D:\exjobb\demoApp//-0.1.war

A WAR file -0.1.war was created for us under the top(root) directory. 0.1 is
the application version defined on line 2 in the application.properties file. The
WAR file can now be placed and used on the Java application server of our
choice.

However, Grails already comes bundled with the powerful Jetty Server and we
can of course use it to run our application from a WAR file by running:

» grails run-war

Output:
...
Environment set to development
...
Server running. Browse to http://localhost:8080/

As can be seen, the default environment and port is the same as for the run-app
command. We can run with other settings in the same way described in Section
10.5 on p.65.

Other important things to consider when running on the JVM, is to run with
the -server option and with good memory settings. This is achieved by setting
the environment variable JAVA_OPTS before running the application.

On a Windows system:

113

>> set JAVA_OPTS=-server -Xms512m -Xmx512m -XX:MaxPermSize=99m

On a Unix like system:

>> export JAVA_OPTS="-server -Xms512m -Xmx512m -XX:MaxPermSize=99m"

For information on the meaning of these and other available JVM settings,
please refer to
http://java.sun.com/performance/reference/whitepapers/tuning.html,
http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp and
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html.

15.4 Other

There are many more features in Grails, but writing a 570 pages book (like
Definitive Guide to Grails, Second Edition) is not the scope of this document.
Hopefully you now have an idea of what Grails can do for Web application
devlopment in a Java environment.

114

http://java.sun.com/performance/reference/whitepapers/tuning.html
http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html

A Appendix

A.1 Files

A.1.1 grails-app/conf/DataSource.groovy

1 dataSource {
2 pooled = true
3 driverClassName = "org.hsqldb.jdbcDriver"
4 username = "sa"
5 password = ""
6 }
7 hibernate {
8 cache.use_second_level_cache=true
9 cache.use_query_cache=true

10 cache.provider_class=’com.opensymphony.oscache.hibernate.OSCacheProvider’
11 }
12 // environment specific settings
13 environments {
14 development {
15 dataSource {
16 dbCreate = "create-drop" // one of ’create’, ’create-drop’,’update’
17 url = "jdbc:hsqldb:mem:devDB"
18 }
19 }
20 test {
21 dataSource {
22 dbCreate = "update"
23 url = "jdbc:hsqldb:mem:testDb"
24 }
25 }
26 production {
27 dataSource {
28 dbCreate = "update"
29 url = "jdbc:hsqldb:file:prodDb;shutdown=true"
30 }
31 }
32 }

115

References

[1] Venkat Subramaniam
Programming Groovy. Dynamic Productivity for the Java Developer
The Pragmatic Programmers 2008

[2] Ian F. Darwin
Groovy, Java’s New Scripting Language
http://onjava.com/pub/a/onjava/2004/09/29/groovy.html

[3] Koenig with Glover, King, Laforge and Skeet
What Groovy Can Do For You
http://www.developer.com/open/article.php/10930_3657751_1

[4] Christopher M. Judd, Joseph Faisal Nusairat and James Shingler
Beginning Groovy and Grails. From Novice to Professional
Apress 2008

[5] Jason Rudolph
Geting Started With Grails
InfoQ 2006

[6] Groovy User Guide
http://groovy.codehaus.org/User+Guide

[7] Scott Davis
Groovy Recipes, Greasing the Wheels of Java

[8] Java Specification Requests. The Groovy Programming Language Java
http://jcp.org/en/jsr/detail?id=241

[9] Youssef El Messaoudi, Gaya Kessler, Marco Kuiper, Jaap Mengers, Bart
van Zeeland
Getting Groovy in an SOA

[10] Graeme Rocher
Definitive Guide to Grails
Apress 2006

[11] Graeme Rocher
Definitive Guide to Grails, Second Edition
Apress 2009

[12] Your way to Groovy
http://www.developer.com/lang/article.php/3657751

[13] Duck typing
http://en.wikipedia.org/wiki/Duck_typing

[14] Dynamic Tag Libraries
http://grails.org/Dynamic+Tag+Libraries

[15] Dierk König
Groovy In Action
Manning 2007

116

http://onjava.com/pub/a/onjava/2004/09/29/groovy.html
http://www.developer.com/open/article.php/10930_3657751_1
http://groovy.codehaus.org/User+Guide
http://jcp.org/en/jsr/detail?id=241
http://www.developer.com/lang/article.php/3657751
http://en.wikipedia.org/wiki/Duck_typing
http://grails.org/Dynamic+Tag+Libraries

[16] Interface Metaclass
http://groovy.codehaus.org/api/groovy/lang/MetaClass.html

[17] Glen Smith, Peter Ledbrook
Grails In Action Mannig 2009

[18] Java EE at a Glance
http://java.sun.com/javaee

[19] Forbes - VMware buying SpringSource
http://www.forbes.com/feeds/afx/2009/08/10/afx6762406.html

[20] Bashar Abdul Jawad
Groovy and Grails Recipes Apress 2008

[21] Grails Reference 1.0.3
http://grails.org/doc/1.0.3

[22] Spring MVC Integration
http://grails.org/Developer+-+Spring+MVC+Integration

[23] What is Hibernate?
http://www.datadirect.com/developer/jdbc/hibernate/what-hib/
index.ssp

[24] The future of J2EE
http://news.cnet.com/The-future-of-J2EE/2010-1001_3-5106960.
html

[25] Whatever Happened to Obect-Oriented Databases?
http://www.leavcom.com/db_08_00.htm

[26] Spidermans grandfather in Spiderman 1

[27] From Java to Groovy in a few easy steps
http://groovy.dzone.com/news/java-groovy-few-easy-steps

[28] Controllers Scopes
http://grails.org/Controllers+-+Controller+Scopes

117

http://groovy.codehaus.org/api/groovy/lang/MetaClass.html
http://java.sun.com/javaee
http://www.forbes.com/feeds/afx/2009/08/10/afx6762406.html
http://grails.org/doc/1.0.3
http://grails.org/Developer+-+Spring+MVC+Integration
http://www.datadirect.com/developer/jdbc/hibernate/what-hib/index.ssp
http://www.datadirect.com/developer/jdbc/hibernate/what-hib/index.ssp
http://news.cnet.com/The-future-of-J2EE/2010-1001_3-5106960.html
http://news.cnet.com/The-future-of-J2EE/2010-1001_3-5106960.html
http://www.leavcom.com/db_08_00.htm
http://groovy.dzone.com/news/java-groovy-few-easy-steps
http://grails.org/Controllers+-+Controller+Scopes

	Foreword
	Introduction to Groovy
	Getting started
	Installing Groovy
	JDK - A Prerequisite
	Installing Groovy

	Updating Groovy
	Editors for Groovy and Grails
	groovysh, groovyConsole & groovy

	Boolean Evaluation, Elvis Operator & the Safe Navigation Operator
	Elvis Operator
	Safe Navigation Operator

	String & GString
	Classes, Dynamic type, Methods, Closures the & Meta-Object Protocol
	Dynamic type
	Closure
	Create
	Call
	Getting Information
	Method Reference Pointer

	More on Methods
	Optional Parantheses
	Positional Parameters
	Optional Parameters
	Mapped Parameters
	Dynamic Method Call

	Meta-Object Protocol
	Adding Methods & Properties
	Add Constructor
	Intercepting Method Calls
	Getting Information

	Collections (List, Range, Map) and Iterative Object Methods
	List
	Range
	Map

	Other
	Groovy Switch
	Groovy SQL
	File
	Exception Handling
	Other

	Introduction to Grails
	Getting Started
	Installing Grails
	Editors for Groovy and Grails
	Grails Commands
	Create Application & Grails Directory Structure
	Run Application & Database Configuration

	MVC model in Grails
	Domain
	Controller & View

	More on Domain
	Create
	Read
	Criteria
	SQL

	Update
	Set, List and Map
	Set
	List
	Map

	Relations
	Owner
	One-to-one
	One-to-Many
	Many-to-Many

	Delete
	Constraints
	Mapping
	Other
	Events
	Methods

	More on Controller
	Scope
	Request
	Session
	Flash

	Redirect & Chain
	Redirect
	Chain

	Interceptors

	More on View
	Code in GSP
	Page Directive
	Groovy Code

	Tags in GSP
	Grails Tag Library
	Creating Custom Tags

	Template
	Layout

	Other
	Filters
	Ajax
	Deploying
	Other

	Appendix
	Files
	grails-app/conf/DataSource.groovy

